Tagged: mass extinctions

Coprolitos revelan detalles acerca de la extinción masiva del Pérmico-Triásico

[Read it in English!] [Przeczytaj to po polsku!] [archivo pdf v. 21.12.2016]

coprolite-triassic-australia-1

Coprolito de un carnívoro grande, probablemente un arcosauromorfo, del Triásico Temprano de Australia (foto P. Bajdek)

Recientes trabajos rusos y australianos

Las llamadas extinciones masivas están llenas de misterio y suelen constituir uno de los temas más emocionantes para todo quien sea aficionado a la historia de vida. Hoy, voy a comentar dos publicaciones recientes que tratan de la extinción masiva del Pérmico-Triásico (Niedźwiedzki et al., 2016a) y de la recuperación de vida tras esta extinción (Niedźwiedzki et al., 2016b). Soy el segundo autor de ambas publicaciones y puede apreciarse el nombre de Grzegorz Niedźwiedzki quien dirigió nuestro equipo.

Diversidad de coprolitos y las extinciones masivas

Primero, quisiera presentar otro estudio interesante, el cual en verdad no es mío. Probablemente la más famosa de las extinciones masivas, mas no la más grande, ocurrió al final del Cretácico (hace unos 66 millones de años) cuando se extinguieron los dinosaurios, entre varias criaturas más. En el año 2012 salió un trabajo de cinco investigadores del Museo de la Historia Natural y Ciencia del Nuevo México. El equipo de Thomas L. Suazo estudió la diversidad de coprolitos, es decir de los excrementos fosilizados, en cinco formaciones geológicas del Nuevo México: tres de ellas del Cretácico Superior (Campaniense y Maastrichtiense) y dos del Cenozoico (Paleoceno y Eoceno).

Al contrario de lo que podría esperarse, los investigadores descubrieron que las morfologías de los coprolitos no cambian significativamente en la transición Cretácico-Paleógeno y concluyeron: «Esto indica que ningunos de los coprolitos preservados son de dinosaurios, o bien que los coprolitos de dinosaurios son iguales en morfología con los de algunos otros animales, como los cocodrilos».

El problema básico en el estudio de los coprolitos es que los excrementos suelen desvelar poca información taxonómica acerca de sus productores. Grupos distintos de animales a veces producen excrementos bastante similares, mientras que los de un solo individuo pueden variar mucho en apariencia. Finalmente, todo esto queda alterado en el proceso de la fosilización. Puede resultar especialmente insidiosa la comparación de morfotipos de coprolitos provenientes de contextos paleobiológicos claramente diferentes, como p.ej. distintos períodos geológicos.

Al contrario, el reciente estudio de nuestro equipo (Niedźwiedzki et al., 2016a) se enfoca en la diversidad de coprolitos en la transición Pérmico-Triásico en varios perfiles geológicos de un solo sitio. Cabe acotar que lo ocurrido al final del Pérmico (hace unos 252 millones de años) se considera como la extinción masiva más severa en la historia de vida, en la cual desaparecieron hasta el 96% de todas las especies marinas y el 70% de las especies de vertebrados terrestres.

Ya he hablado sobre los coprolitos del sitio de Vyazniki en Rusia, puesto que han aportado una posible prueba de la existencia de pelos en los terápsidos, además de una gran diversidad de otros microfósiles. Las rocas de la región de Vyazniki nos dejan estudiar la fauna de los finales del Pérmico y los comienzos del Triásico. En el nuevo estudio, hemos dividido los especímenes (los coprolitos y posiblemente algunos cololitos) en nueve morfotipos y documentado en detalle sus extensiones estratigráficas así como los tipos del sedimento en donde se encuentran.

Como hemos descubierto, de hecho ocurrió una reducción de la diversidad de coprolitos. En el Triásico Temprano reaparecieron solamente tres de los nueve morfotipos presentes en los sedimentos del Pérmico Superior. No se pudo sin embargo encontrar ninguna explicación tafonómica de tal reducción de la diversidad de los coprolitos, como por ejemplo un cambio significante en el proceso de la sedimentación. En otras palabras, a todas luces desapareció la mayoría de los animales que producían los excrementos.

Recuperación de vida tras la Gran Mortandad

coprolite-triassic-australia-2Coprolitos nos hablan también de la recuperación de la vida tras la extinción masiva del Pérmico-Triásico. En el segundo trabajo de mi autoría que quisiera discutir en esta entrada de blog (Niedźwiedzki et al., 2016b) se describe el material de coprolitos proveniente de la arenisca Bulgo que aflora en los acantilados costeros de Long Reef en los suburbios norteños de Sídney, Australia. Estas rocas son del Olenekiense inferior (un piso del Triásico Inferior) lo que significa que los coprolitos que hemos estudiado fueron producidos por animales que vivían cerca de un millón de años después de la Gran Mortandad.

Hemos distinguido once morfotipos recurrentes de coprolitos de tetrápodos, así como un espécimen de bromalito de un pez. Algunos de los morfotipos de coprolitos se asignaron probablemente a los reptiles arcosauromorfos y otros a los anfibios temnospóndilos, cuyos restos óseos ahora están bajo estudio. Tal diversidad de fauna de vertebrados es sin duda interesante tomando en cuenta que estos animales vivían tan poco después de la Gran Mortandad. Ahora acotemos que durante el Triásico Temprano la región de Sídney estaba ubicada en las cercanías del círculo polar antártico…

En el Triásico Temprano el clima era de hecho más cálido que hoy y no habían capas de hielo polares. Sin embargo, las altas latitudes debían de recibir poca insolación. Las posibles respuestas bióticas habrían abarcado una actividad disminuida durante un periódico albergue en madrigueras, o bien otros mecanismos de conducta o fisiológicos como la migración o la homeotermia. Además, ya en 2005 Caroline Northwood describió unos coprolitos diversificados de la formación Arcadia del Triásico Inferior de Queensland. Interesadamente, ciertos investigadores han sugerido que la Antártica sirvió de refugio a los tetrápodos terrestres durante la extinción masiva del Pérmico-Triásico.

Piotr Bajdek

Bibliografía

Niedźwiedzki, G., Bajdek, P., Qvarnström, M., Sulej, T., Sennikov, A.G., Golubev, V.K., 2016a. Reduction of vertebrate coprolite diversity associated with the end-Permian extinction event in Vyazniki region, European Russia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 450, 77–90. doi: 10.1016/j.palaeo.2016.02.057

Niedźwiedzki, G., Bajdek, P., Owocki, K., Kear, B.P., 2016b. An Early Triassic polar predator ecosystem revealed by vertebrate coprolites from the Bulgo Sandstone (Sydney Basin) of southeastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 464, 5–15. doi: 10.1016/j.palaeo.2016.04.003

Northwood, C., 2005. Early Triassic coprolites from Australia and their palaeobiological significance. Palaeontology 48, 49–68.

Suazo, T.L., Cantrell, A.K., Lucas, S.G., Spielmann, J.A., Hunt, A.P., 2012. Coprolites across the Cretaceous/Tertiary boundary, San Juan Basin, New Mexico. NMMNH Bull. 57, 263–274.
Advertisements

Koprolitowy zapis wymierania permskiego

[Read it in English!] [¡Léalo en español!] [plik pdf v. 21.12.2016]

coprolite-triassic-australia-1

Koprolit wielkiego mięsożercy, być może archozauromorfa, z wczesnego triasu Australii (zdjęcie P. Bajdek)

Najnowsze rosyjskie i australijskie publikacje

Tak zwane wielkie wymierania przepełnia tajemnica i zwykły stanowić jeden z najbardziej emocjonujących tematów dla każdego, kogo fascynuje historia życia. Dziś zajmę się dwoma nowymi publikacjami na temat wymierania z końca permu (Niedźwiedzki et al., 2016a) oraz odbudowy życia po tym wymieraniu (Niedźwiedzki et al., 2016b). Jestem drugim autorem obu tych prac, widzimy zaś nazwisko Grzegorza Niedźwiedzkiego, który poprowadził nasz zespół.

Różnorodność koprolitów, a masowe wymierania

Na początek chciałbym omówić inną interesującą pracę, która w istocie nie jest moja. Prawdopodobnie najsłynniejsze, choć nie największe masowe wymieranie nastąpiło pod koniec okresu kredowego (około 66 milionów lat temu), kiedy to wymarły dinozaury wśród wielu innych stworzeń. W roku 2012 ukazała się publikacja pięciu badaczy z Muzeum Historii Naturalnej i Nauki Nowego Meksyku. Zespół Thomasa L. Suazo zbadał zróżnicowanie koprolitów, tj. skamieniałych odchodów, w pięciu formacjach geologicznych Nowego Meksyku: trzech o wieku górnokredowym (kampan i mastrycht) i dwóch kenozoicznych (paleocen i eocen).

Przeciwnie do tego co można by oczekiwać, badacze odkryli, że morfologie koprolitów nie zmieniają się znacząco na granicy kredy i paleogenu, oraz wyciągnęli konkluzję: „To wskazuje, że albo żadne z zachowanych koprolitów nie są dinozaurowe, albo że koprolity dinozaurów mają jednakową morfologię jak te niektórych innych kręgowców, jak np. krokodyli.”

Podstawowy problem w badaniach koprolitów tkwi w tym, że odchody zwykły ujawniać niewiele taksonomicznej informacji o ich wytwórcy. Odmienne grupy zwierząt czasem robią całkiem podobne odchody, podczas gdy odchody tylko jednego osobnika mogą mieć bardzo zróżnicowany wygląd, a wszystko to zostaje zniekształcone w procesie fosylizacji. Porównywanie morfotypów koprolitowych z wyraźnie odmiennych kontekstów paleobiologicznych, jak np. różne okresy geologiczne, może okazać się szczególnie mylące.

Przeciwnie, nowe badanie naszego zespołu (Niedźwiedzki et al., 2016a) koncentruje się na zmianach różnorodności koprolitów na granicy permu i triasu w kilku profilach geologicznych tylko jednego stanowiska. Godne uwagi jest, że wydarzenie z końca permu (około 252 miliony lat temu) uważa się za najpoważniejsze wymieranie w historii życia, w którym to zniknęło do 96% wszystkich morskich gatunków i 70% gatunków lądowych kręgowców.

Opowiadałem już o koprolitach z Vyaznik w Rosji jako, że dostarczyły możliwych dowodów na obecność włosów u terapsydów oraz ogromnej różnorodności innych mikroskamieniałości. Skały z regionu Vyaznik pozwalają nam zbadać faunę najpóźniejszego permu oraz najwcześniejszego triasu. W nowym badaniu pogrupowaliśmy okazy (koprolity i być może nieco kololitów) w dziewięciu morfotypach oraz drobiazgowo udokumentowaliśmy ich zasięgi stratygraficzne i rodzaje osadów, w których są znajdowane.

Odkryliśmy, że faktycznie nastąpiło zmniejszenie różnorodności koprolitów. W najwcześniejszym triasie tylko trzy z dziewięciu morfotypów obecnych w osadach najwyższego permu pojawiły się na nowo. Nie udało się jednakże odnaleźć jakiejkolwiek tafonomicznej przyczyny tej redukcji bogactwa koprolitów, takiej jak na przykład znacząca zmiana w procesie sedymentacji. Innymi słowy, zdaje się, że zniknęła większość zwierząt, które robiły odchody.

Odbudowa życia po wielkim wymieraniu permskim

coprolite-triassic-australia-2Koprolity mówią nam również o odbudowie życia po masowym wymieraniu z końca permu. Druga praca mojego autorstwa, którą chcę omówić w tym wpisie (Niedźwiedzki et al., 2016b), opisuje materiał koprolitowy pochodzący z piaskowca Bulgo, który odsłania się wzdłuż wybrzeża klifowego Long Reef na północnych przedmieściach Sydney w Australii. Wiek tych skał to dolny olenek (piętro dolnego triasu), co znaczy, że koprolity, które zbadaliśmy, były zrobione przez zwierzęta żyjące zaledwie około jednego miliona lat po wielkim wymieraniu permskim.

Wyszczególniliśmy jedenaście powtarzających się morfotypów koprolitów czworonogów, jak również jeden okaz bromalitu ryby. Niektóre morfotypy koprolitowe zostały przypisane najprawdopodobniej archozauromorfowym gadom, a inne temnospondylowym płazom, których szczątki kostne są obecnie przedmiotem badań. Taka różnorodność fauny kręgowcowej jest niewątpliwie interesująca biorąc pod uwagę, że zwierzęta te żyły tak krótko po wielkim wymieraniu permskim. Teraz dodajmy, że we wczesnym triasie region Sydney znajdował się w okolicach południowego koła podbiegunowego…

We wczesnych triasie klimat był co prawda cieplejszy niż dziś, jak również nie było pokrywy lodowej na biegunach. Niemniej, wysokie szerokości geograficzne musiały cechować się ograniczonym nasłonecznieniem. Możliwe odpowiedzi biotyczne obejmowałyby obniżoną aktywność podczas sezonowego spoczynku w norach, albo też inne behawioralne i fizjologiczne mechanizmy takie jak migracja lub stałocieplność. Ponadto, już w roku 2005 Caroline Northwood opisała zróżnicowane koprolity z dolnotriasowej formacji Arcadia w Queensland. Niektórzy badacze sugerowali, że co interesujące Antarktyka była schronieniem dla lądowych czworonogów podczas masowego wymierania pod koniec permu.

Piotr Bajdek

Literatura

Niedźwiedzki, G., Bajdek, P., Qvarnström, M., Sulej, T., Sennikov, A.G., Golubev, V.K., 2016a. Reduction of vertebrate coprolite diversity associated with the end-Permian extinction event in Vyazniki region, European Russia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 450, 77–90. doi: 10.1016/j.palaeo.2016.02.057

Niedźwiedzki, G., Bajdek, P., Owocki, K., Kear, B.P., 2016b. An Early Triassic polar predator ecosystem revealed by vertebrate coprolites from the Bulgo Sandstone (Sydney Basin) of southeastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 464, 5–15. doi: 10.1016/j.palaeo.2016.04.003

Northwood, C., 2005. Early Triassic coprolites from Australia and their palaeobiological significance. Palaeontology 48, 49–68.

Suazo, T.L., Cantrell, A.K., Lucas, S.G., Spielmann, J.A., Hunt, A.P., 2012. Coprolites across the Cretaceous/Tertiary boundary, San Juan Basin, New Mexico. NMMNH Bull. 57, 263–274.

Coprolite Evidence on the Permian–Triassic Extinction Event

[¡Léalo en español!] [Przeczytaj to po polsku!] [pdf file v. 21.12.2016]

coprolite-triassic-australia-1Coprolite of a large carnivore, possibly an archosauromorph, from the Early Triassic of Australia (photo P. Bajdek)

Newest Russian and Australian Papers

So-called mass extinctions are full of mystery and used to constitute one of the most thrilling topics for anyone interested in the history of life. Today, I’ll focus on two recent publications treating the topic of the end-Permian mass-extinction (Niedźwiedzki et al., 2016a) and the recovery of life after this extinction (Niedźwiedzki et al., 2016b). I am the second author of both of these papers and you can see the name of Grzegorz Niedźwiedzki who was our team leader.

Coprolite Diversity and Mass-Extinctions

First, I’d like to mention another interesting study which actually is not mine. Probably the most famous, yet not the largest, mass extinction occured at the end of the Cretaceous Period (around 66 million years ago), when the dinosaurs among many other creatures died out. In 2012, came out a paper of five researchers from the New Mexico Museum of Natural History and Science. The team of Thomas L. Suazo studied the diversity of coprolites, i.e. fossil feces, in five geologic formations of New Mexico: three of them Upper Cretaceous (Campanian and Maastrichthian) and two of them Cenozoic (Paleocene and Eocene) in age.

In contrast to what some may expect, the researchers found out that coprolite morphologies do not change significantly across the Cretaceous–Paleogene boundary and concluded: „This suggests that either none of the preserved coprolites are dinosaurian, or that dinosaurian coprolites are homeomorphic with those of some other vertebrates, such as crocodyles.”

A basic problem in the study of coprolites is that feces used to provide few taxonomic information about their producers. Distinct animal groups sometimes produce quite similar feces, whereas feces of just one individual may vary a lot in appearance and all this is altered by the fossilization process. Comparison of coprolite morphotypes from clearly different paleobiologic contexts, as e.g. distinct geologic periods, may result particularly misleading.

In contrast, the recent study of our team (Niedźwiedzki et al., 2016a) focuses on the diversity of coprolite morphotypes across the Permian–Triassic boundary in several geologic profiles of just a single locality. Noteworthy, the end-Permian mass-extinction (around 252 million years ago) is considered the most severe extinction event ever, with up to 96% of all marine species and 70% of terrestrial vertebrate species becoming extinct.

I have already talked about coprolites from the Vyazniki site, Russia, as they provided possible evidence of hair in therapsids and yielded a great diversity of other microfossils. Rocks of the Vyazniki region allow us study the fauna of the latest Permian and the earliest Triassic. In the new study, we grouped the analyzed specimens (coprolites and possibly some cololites) into nine morphotypes and documented in detail their stratigraphic ranges and the type of sediments their are found in.

We found out that there was indeed a reduction of coprolite diversity. In the earliest Triassic, only three of the nine morphotypes present in the sediments of the uppermost Permian reappeared. However, no taphonomic explanation, such as a significant change in the sedimentation process could be found to explain this reduction of coprolite diversity. In other words, it appears that most of the animals that produced the feces disappeared.

Recovery of Life After the Great Permian Extinction

coprolite-Triassic-Australia-2.jpgCoprolites tells us also about the recovery of life after the end-Permian mass-extinction. The second paper of my authorship which I would discuss in this blog post (Niedźwiedzki et al., 2016b) describes coprolite material recovered from the Bulgo Sandstone which crops out along the coastal cliffs at Long Reef in the northern suburbs of Sydney, Australia. These rocks are lower Olenekian (Lower Triassic) in age what means that the coprolites we studied have been produced by animals that lived just around one million years after the Great Permian Extinction.

We distinguished eleven recurring morphotypes of tetrapod coprolites, as well as one fish bromalite specimen. Some of the coprolite morphotypes were ascribed most likely to archosauromorph reptiles and others to temnospondyl amphibians, whose bone remains are under study now. Undoubtedly, such a diversity of vertebrate fauna is interesting taking in consideration that these animals lived so shortly after the Great Permian Extinction. Let’s now say that by the Early Triassic the Sydney region was located close to the southern polar circle…

In the Early Triassic the climate was actually warmer than it is today and there were no polar ice caps, yet there must have been a reduced insolation at high latitudes. Biotic responses might have included reduced activity levels and estivation in burrows, or perhaps other behavioral and physiological mechanisms such as migration and homeothermy. Moreover, already in 2005, Caroline Northwood described diversified coprolites from the Lower Triassic Arcadia Formation, Queensland. Interestingly, some researchers suggested that Antarctica was a refugium for terrestrial tetrapods from the end-Permian mass extinction.

Piotr Bajdek

References

Niedźwiedzki, G., Bajdek, P., Qvarnström, M., Sulej, T., Sennikov, A.G., Golubev, V.K., 2016a. Reduction of vertebrate coprolite diversity associated with the end-Permian extinction event in Vyazniki region, European Russia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 450, 77–90. doi: 10.1016/j.palaeo.2016.02.057

Niedźwiedzki, G., Bajdek, P., Owocki, K., Kear, B.P., 2016b. An Early Triassic polar predator ecosystem revealed by vertebrate coprolites from the Bulgo Sandstone (Sydney Basin) of southeastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 464, 5–15. doi: 10.1016/j.palaeo.2016.04.003

Northwood, C., 2005. Early Triassic coprolites from Australia and their palaeobiological significance. Palaeontology 48, 49–68.

Suazo, T.L., Cantrell, A.K., Lucas, S.G., Spielmann, J.A., Hunt, A.P., 2012. Coprolites across the Cretaceous/Tertiary boundary, San Juan Basin, New Mexico. NMMNH Bull. 57, 263–274.