Tagged: coprolites

The feeding habits of mesosaurs

[¡Léalo en español!] [Lê-lo em português!] [Przeczytaj to po polsku!] [pdf file v. 27.03.2017]

mesosaur-reconstructionSkeletal reconstruction of a young adult mesosaur (Mesosaurus tenuidens) from the Early Permian of Uruguay and Brazil (reproduced from Silva et al., 2017).

Mesosaurs and the Early Amniote Evolution

Mesosaurs represent the most amazing animals of the distant past. They are the oldest known amniotes that developed adaptations to aquatic environment. By the Early Permian, mesosaurs inhabited cold and salty water bodies resulting from the drought of an originally large inland sea that extended over what is now South America and Africa (Piñeiro et al., 2012b). Mesosaurs are represented by several species and a myriad of specimens, including well-preserved skeletons from the Lower Permian of Uruguay, Brazil, and southern Africa, which have been studied for a long time since the 19th century. Thanks to the specific geographic distribution of their remains, mesosaurs have even helped Alfred Wegener to formulate the theory of continental drift.

The study of mesosaurs is indeed important for a number of reasons. First of all, they represent so-called basal amniotes. It means that mesosaurs were quite close in the evolutionary tree to the last common ancestor of all sauropsids (a group including reptiles, their ancestors and relatives) and synapsids (a group including mammals, their ancestors and relatives). For instance, the discovery of well-preserved mesosaur embryos curled as within an egg, and one pregnant female has recently yielded clues about the reproductive biology of early amniotes (Piñeiro et al., 2012a). Interestingly, mesosaurs were viviparous or they laid eggs in advanced stages of development. Finds from Uruguay even suggest that there perhaps existed some kind of parental care in mesosaurs due to common associations of remains of adults with newborns.

Such data can be better understood when interpreted in a broader paleoecologic context. Therefore, out team composed of four researchers from Uruguay, Brazil, and Poland (R.R. Silva, J. Ferigolo, P. Bajdek, and G. Piñeiro) and lead by Graciela Piñeiro, has recently published a new paper on the biology of mesosaurs (Silva et al., 2017), which largely expands our knowledge about these animals. Here, we’d like to briefly sum up our conclusions regarding the feeding habits, physiology, and environment of mesosaurs of Uruguay and Brazil.

 

mesosaur-regurgitalitesPutative mesosaur regurgitalites (fossil vomit) from the Mangrullo Formation, Uruguay; scale bars 1 cm (reproduced from Silva et al., 2017).

Unusual Finds from the Lower Permian of Uruguay and Brazil

Preserved gastric contents, cololites (fossil intestine matter), coprolites (fossil feces), and regurgitalites (fossil vomit) of mesosaurs that we have studied, tell us a lot about the feeding habits, physiology, and life conditions of mesosaurs. These fossils come from the Mangrullo Formation of Uruguay and the Iratí Formation of the State of Goiás, Brazil. Mesosaurids lived in an inland hypersaline water body, with exceptional preservation conditions that justified describing mesosaur-bearing strata as a Fossil-Lagerstätte.

First of all, our study represents an exceptional case where gastric contents, cololites, coprolites, and regurgitalites (i.e., all the “basic” bromalite types) of a single animal species are described. It gave us an uncommon opportunity to make certain observations on all these fossil types, such as to compare their general form of preservation and even the degree of digestion of swallowed remains in different stages of the digestive process.

Paleontologists hardly ever are able to link fossil feces to their producer. This case is different. No other tetrapod is found in the mesosaur-bearing strata. The coprolites have a non-spiral morphology that is typical for tetrapods, in contrast to all fish of the Permian Period. Finally, the content of the coprolites is comparable to that found in mesosaur stomach and intestine contents. Alternatively, the smallest of the coprolite specimens would have been produced by large crustaceans.

Such an uncommon opportunity to take a look at the feeding habits of an extinct animal must not be wasted. Previously, the diet of mesosaurs was only inferred from indirect evidence, what is in fact a kind of ‘educated guess’. For over a hundred years, various hypotheses have been proposed for determining mesosaur feeding habits: fish-eating, sludge filter-type habit, or crustacean-based diet. Now, let’s look deep into mesosaur stomachs…

 

mesosaur-skeletonMesosaur skeleton (Brazilosaurus sanpauloensis) showing a preserved cololite (blue arrow) and several coprolites surrounding it (red arrows), from the Iratí Formation, Brazil (modified from Silva et al., 2017).

Cannibals and Scavengers under Environmental Stress

We found out that mesosaur diet included crustaceans as the main food item, corroborating some of the hypotheses. On the other hand, no fish remains were recognized in mesosaur gastric contents, cololites, coprolites, and regurgitalites, as no fish are found in the mesosaur-bearing strata. More surprisingly, acid-etched mesosaur bones and teeth are found in mesosaur bromalites.

The presence of mesosaur remains in mesosaur stomach content, regurgitalites, and other bromalites, is particularly interesting. Yet, easy assumptions in the study of bromalites are sometimes misleading. Were mesosaurs cannibalistic predators? Well, the jaw aperture in an average-sized mesosaur was much too small to allow even newborn mesosaurs to be swallowed whole, meanwhile mesosaur teeth seem not to be adapted to powerful biting. A predatory scenario would be hence a little surprising to us. Instead, we note that mesosaurs fed on crustaceans generally not exceeding 2 cm in length. Taking a close look at the gastric contents we can recognize no articulated skeletal elements, which would be expected to be still present in the earliest stage of the digestive process.

Explanation of the mystery requires a comment on the environment which the mesosaurs lived in. Mesosaur remains are found in rocks formed in a hypersaline water body and such environments are famous for extreme severity. The stress conditions might have been also caused by the extended volcanism and ash spread into the water body during the Early Permian. The environmental conditions and the faunistic poverty of the mesosaur-bearing ‘salty sea’ are the first key to the mystery. There were no fish in water, nearly nothing to eat for mesosaurs but crustaceans and… mesosaur dead bodies.

Cannibalistic behavior and scavenging are quite common under environmental stress, overcrowding and insufficient food resources. Mesosaurs probably ingested elements of mesosaurid carrion in partial decomposition. It seems possible that also the largest of the crustacean remains were scavenged from the bottom, as they often appear to be very weathered.

Mesosaurs regurgitated the biggest of bone fragments as well as seemingly crustaceans, which were too large to pass through the gastrointestinal tract. Various amniotes, as for example raptor birds, crocodiles, and probably ichthyosaurs, regurgitate most of the indigestible or hard-to-digest remains. Some of the objects might have been ingested accidentally, or were mesosaurs so hungry living in this harsh environment? Regurgitation might also have been caused by the environmental stress itself. Because digestion efficiency depends on body temperature, in extant reptiles undigested food remnants may be regurgitated during periods of unfavorable environmental temperature. Disease may also cause regurgitation.

Bone elements in the mesosaur coprolites are intriguing too. Reptiles are characterized by a strong digestion and many of them digest the swallowed bones practically completely. However, mesosaurs were fairly small and their period of digestion was not necessarily very long. Also, the presence of poorly digested remains in feces, caused by short digestion, may have to do with fluctuating food availability.

Epilog of the Mesosaur Story

Fossilization of the mesosaur remains and their bromalites was facilitated by microbial mats on the bottom of the water bodies and the volcanic events and ash spread. It gave us a fascinating, but also a little terrifying opportunity to investigate enigmas of the biology of some of the earliest amniotes. The study of mesosaurs has just begun!

Piotr Bajdek 1, Graciela Piñeiro 2, Rivaldo R. Silva 3, Jorge Ferigolo 4

1 Częstochowa, Poland
2 Universidad de la República de Uruguay
3 Universidade Luterana do Brasil
4 Fundação Zoobotânica do Rio Grande do Sul, Brazil

References

Piñeiro, G., Ferigolo, J., Meneghel, M., Laurin, M., 2012a. The oldest known amniotic embryos suggest viviparity in mesosaurs. Hist. Biol. 24, 630–640.

Piñeiro, G., Ramos, A., Goso, C., Scarabino, F., Laurin, M., 2012b. Unusual environmental conditions preserve a Permian mesosaur−bearing Konservat−Lagerstätte from Uruguay. Acta Palaeontol. Pol. 57 (2), 299–318. doi: 10.4202/app.2010.0113

Silva, R.R., Ferigolo, J., Bajdek, P., Piñeiro, G.H., 2017. The feeding habits of Mesosauridae. Front. Earth Sci. 5:23. doi: 10.3389/feart.2017.00023

Advertisements

Coprolitos revelan detalles acerca de la extinción masiva del Pérmico-Triásico

[Read it in English!] [Przeczytaj to po polsku!] [archivo pdf v. 21.12.2016]

coprolite-triassic-australia-1

Coprolito de un carnívoro grande, probablemente un arcosauromorfo, del Triásico Temprano de Australia (foto P. Bajdek)

Recientes trabajos rusos y australianos

Las llamadas extinciones masivas están llenas de misterio y suelen constituir uno de los temas más emocionantes para todo quien sea aficionado a la historia de vida. Hoy, voy a comentar dos publicaciones recientes que tratan de la extinción masiva del Pérmico-Triásico (Niedźwiedzki et al., 2016a) y de la recuperación de vida tras esta extinción (Niedźwiedzki et al., 2016b). Soy el segundo autor de ambas publicaciones y puede apreciarse el nombre de Grzegorz Niedźwiedzki quien dirigió nuestro equipo.

Diversidad de coprolitos y las extinciones masivas

Primero, quisiera presentar otro estudio interesante, el cual en verdad no es mío. Probablemente la más famosa de las extinciones masivas, mas no la más grande, ocurrió al final del Cretácico (hace unos 66 millones de años) cuando se extinguieron los dinosaurios, entre varias criaturas más. En el año 2012 salió un trabajo de cinco investigadores del Museo de la Historia Natural y Ciencia del Nuevo México. El equipo de Thomas L. Suazo estudió la diversidad de coprolitos, es decir de los excrementos fosilizados, en cinco formaciones geológicas del Nuevo México: tres de ellas del Cretácico Superior (Campaniense y Maastrichtiense) y dos del Cenozoico (Paleoceno y Eoceno).

Al contrario de lo que podría esperarse, los investigadores descubrieron que las morfologías de los coprolitos no cambian significativamente en la transición Cretácico-Paleógeno y concluyeron: «Esto indica que ningunos de los coprolitos preservados son de dinosaurios, o bien que los coprolitos de dinosaurios son iguales en morfología con los de algunos otros animales, como los cocodrilos».

El problema básico en el estudio de los coprolitos es que los excrementos suelen desvelar poca información taxonómica acerca de sus productores. Grupos distintos de animales a veces producen excrementos bastante similares, mientras que los de un solo individuo pueden variar mucho en apariencia. Finalmente, todo esto queda alterado en el proceso de la fosilización. Puede resultar especialmente insidiosa la comparación de morfotipos de coprolitos provenientes de contextos paleobiológicos claramente diferentes, como p.ej. distintos períodos geológicos.

Al contrario, el reciente estudio de nuestro equipo (Niedźwiedzki et al., 2016a) se enfoca en la diversidad de coprolitos en la transición Pérmico-Triásico en varios perfiles geológicos de un solo sitio. Cabe acotar que lo ocurrido al final del Pérmico (hace unos 252 millones de años) se considera como la extinción masiva más severa en la historia de vida, en la cual desaparecieron hasta el 96% de todas las especies marinas y el 70% de las especies de vertebrados terrestres.

Ya he hablado sobre los coprolitos del sitio de Vyazniki en Rusia, puesto que han aportado una posible prueba de la existencia de pelos en los terápsidos, además de una gran diversidad de otros microfósiles. Las rocas de la región de Vyazniki nos dejan estudiar la fauna de los finales del Pérmico y los comienzos del Triásico. En el nuevo estudio, hemos dividido los especímenes (los coprolitos y posiblemente algunos cololitos) en nueve morfotipos y documentado en detalle sus extensiones estratigráficas así como los tipos del sedimento en donde se encuentran.

Como hemos descubierto, de hecho ocurrió una reducción de la diversidad de coprolitos. En el Triásico Temprano reaparecieron solamente tres de los nueve morfotipos presentes en los sedimentos del Pérmico Superior. No se pudo sin embargo encontrar ninguna explicación tafonómica de tal reducción de la diversidad de los coprolitos, como por ejemplo un cambio significante en el proceso de la sedimentación. En otras palabras, a todas luces desapareció la mayoría de los animales que producían los excrementos.

Recuperación de vida tras la Gran Mortandad

coprolite-triassic-australia-2Coprolitos nos hablan también de la recuperación de la vida tras la extinción masiva del Pérmico-Triásico. En el segundo trabajo de mi autoría que quisiera discutir en esta entrada de blog (Niedźwiedzki et al., 2016b) se describe el material de coprolitos proveniente de la arenisca Bulgo que aflora en los acantilados costeros de Long Reef en los suburbios norteños de Sídney, Australia. Estas rocas son del Olenekiense inferior (un piso del Triásico Inferior) lo que significa que los coprolitos que hemos estudiado fueron producidos por animales que vivían cerca de un millón de años después de la Gran Mortandad.

Hemos distinguido once morfotipos recurrentes de coprolitos de tetrápodos, así como un espécimen de bromalito de un pez. Algunos de los morfotipos de coprolitos se asignaron probablemente a los reptiles arcosauromorfos y otros a los anfibios temnospóndilos, cuyos restos óseos ahora están bajo estudio. Tal diversidad de fauna de vertebrados es sin duda interesante tomando en cuenta que estos animales vivían tan poco después de la Gran Mortandad. Ahora acotemos que durante el Triásico Temprano la región de Sídney estaba ubicada en las cercanías del círculo polar antártico…

En el Triásico Temprano el clima era de hecho más cálido que hoy y no habían capas de hielo polares. Sin embargo, las altas latitudes debían de recibir poca insolación. Las posibles respuestas bióticas habrían abarcado una actividad disminuida durante un periódico albergue en madrigueras, o bien otros mecanismos de conducta o fisiológicos como la migración o la homeotermia. Además, ya en 2005 Caroline Northwood describió unos coprolitos diversificados de la formación Arcadia del Triásico Inferior de Queensland. Interesadamente, ciertos investigadores han sugerido que la Antártica sirvió de refugio a los tetrápodos terrestres durante la extinción masiva del Pérmico-Triásico.

Piotr Bajdek

Bibliografía

Niedźwiedzki, G., Bajdek, P., Qvarnström, M., Sulej, T., Sennikov, A.G., Golubev, V.K., 2016a. Reduction of vertebrate coprolite diversity associated with the end-Permian extinction event in Vyazniki region, European Russia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 450, 77–90. doi: 10.1016/j.palaeo.2016.02.057

Niedźwiedzki, G., Bajdek, P., Owocki, K., Kear, B.P., 2016b. An Early Triassic polar predator ecosystem revealed by vertebrate coprolites from the Bulgo Sandstone (Sydney Basin) of southeastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 464, 5–15. doi: 10.1016/j.palaeo.2016.04.003

Northwood, C., 2005. Early Triassic coprolites from Australia and their palaeobiological significance. Palaeontology 48, 49–68.

Suazo, T.L., Cantrell, A.K., Lucas, S.G., Spielmann, J.A., Hunt, A.P., 2012. Coprolites across the Cretaceous/Tertiary boundary, San Juan Basin, New Mexico. NMMNH Bull. 57, 263–274.

Koprolitowy zapis wymierania permskiego

[Read it in English!] [¡Léalo en español!] [plik pdf v. 21.12.2016]

coprolite-triassic-australia-1

Koprolit wielkiego mięsożercy, być może archozauromorfa, z wczesnego triasu Australii (zdjęcie P. Bajdek)

Najnowsze rosyjskie i australijskie publikacje

Tak zwane wielkie wymierania przepełnia tajemnica i zwykły stanowić jeden z najbardziej emocjonujących tematów dla każdego, kogo fascynuje historia życia. Dziś zajmę się dwoma nowymi publikacjami na temat wymierania z końca permu (Niedźwiedzki et al., 2016a) oraz odbudowy życia po tym wymieraniu (Niedźwiedzki et al., 2016b). Jestem drugim autorem obu tych prac, widzimy zaś nazwisko Grzegorza Niedźwiedzkiego, który poprowadził nasz zespół.

Różnorodność koprolitów, a masowe wymierania

Na początek chciałbym omówić inną interesującą pracę, która w istocie nie jest moja. Prawdopodobnie najsłynniejsze, choć nie największe masowe wymieranie nastąpiło pod koniec okresu kredowego (około 66 milionów lat temu), kiedy to wymarły dinozaury wśród wielu innych stworzeń. W roku 2012 ukazała się publikacja pięciu badaczy z Muzeum Historii Naturalnej i Nauki Nowego Meksyku. Zespół Thomasa L. Suazo zbadał zróżnicowanie koprolitów, tj. skamieniałych odchodów, w pięciu formacjach geologicznych Nowego Meksyku: trzech o wieku górnokredowym (kampan i mastrycht) i dwóch kenozoicznych (paleocen i eocen).

Przeciwnie do tego co można by oczekiwać, badacze odkryli, że morfologie koprolitów nie zmieniają się znacząco na granicy kredy i paleogenu, oraz wyciągnęli konkluzję: „To wskazuje, że albo żadne z zachowanych koprolitów nie są dinozaurowe, albo że koprolity dinozaurów mają jednakową morfologię jak te niektórych innych kręgowców, jak np. krokodyli.”

Podstawowy problem w badaniach koprolitów tkwi w tym, że odchody zwykły ujawniać niewiele taksonomicznej informacji o ich wytwórcy. Odmienne grupy zwierząt czasem robią całkiem podobne odchody, podczas gdy odchody tylko jednego osobnika mogą mieć bardzo zróżnicowany wygląd, a wszystko to zostaje zniekształcone w procesie fosylizacji. Porównywanie morfotypów koprolitowych z wyraźnie odmiennych kontekstów paleobiologicznych, jak np. różne okresy geologiczne, może okazać się szczególnie mylące.

Przeciwnie, nowe badanie naszego zespołu (Niedźwiedzki et al., 2016a) koncentruje się na zmianach różnorodności koprolitów na granicy permu i triasu w kilku profilach geologicznych tylko jednego stanowiska. Godne uwagi jest, że wydarzenie z końca permu (około 252 miliony lat temu) uważa się za najpoważniejsze wymieranie w historii życia, w którym to zniknęło do 96% wszystkich morskich gatunków i 70% gatunków lądowych kręgowców.

Opowiadałem już o koprolitach z Vyaznik w Rosji jako, że dostarczyły możliwych dowodów na obecność włosów u terapsydów oraz ogromnej różnorodności innych mikroskamieniałości. Skały z regionu Vyaznik pozwalają nam zbadać faunę najpóźniejszego permu oraz najwcześniejszego triasu. W nowym badaniu pogrupowaliśmy okazy (koprolity i być może nieco kololitów) w dziewięciu morfotypach oraz drobiazgowo udokumentowaliśmy ich zasięgi stratygraficzne i rodzaje osadów, w których są znajdowane.

Odkryliśmy, że faktycznie nastąpiło zmniejszenie różnorodności koprolitów. W najwcześniejszym triasie tylko trzy z dziewięciu morfotypów obecnych w osadach najwyższego permu pojawiły się na nowo. Nie udało się jednakże odnaleźć jakiejkolwiek tafonomicznej przyczyny tej redukcji bogactwa koprolitów, takiej jak na przykład znacząca zmiana w procesie sedymentacji. Innymi słowy, zdaje się, że zniknęła większość zwierząt, które robiły odchody.

Odbudowa życia po wielkim wymieraniu permskim

coprolite-triassic-australia-2Koprolity mówią nam również o odbudowie życia po masowym wymieraniu z końca permu. Druga praca mojego autorstwa, którą chcę omówić w tym wpisie (Niedźwiedzki et al., 2016b), opisuje materiał koprolitowy pochodzący z piaskowca Bulgo, który odsłania się wzdłuż wybrzeża klifowego Long Reef na północnych przedmieściach Sydney w Australii. Wiek tych skał to dolny olenek (piętro dolnego triasu), co znaczy, że koprolity, które zbadaliśmy, były zrobione przez zwierzęta żyjące zaledwie około jednego miliona lat po wielkim wymieraniu permskim.

Wyszczególniliśmy jedenaście powtarzających się morfotypów koprolitów czworonogów, jak również jeden okaz bromalitu ryby. Niektóre morfotypy koprolitowe zostały przypisane najprawdopodobniej archozauromorfowym gadom, a inne temnospondylowym płazom, których szczątki kostne są obecnie przedmiotem badań. Taka różnorodność fauny kręgowcowej jest niewątpliwie interesująca biorąc pod uwagę, że zwierzęta te żyły tak krótko po wielkim wymieraniu permskim. Teraz dodajmy, że we wczesnym triasie region Sydney znajdował się w okolicach południowego koła podbiegunowego…

We wczesnych triasie klimat był co prawda cieplejszy niż dziś, jak również nie było pokrywy lodowej na biegunach. Niemniej, wysokie szerokości geograficzne musiały cechować się ograniczonym nasłonecznieniem. Możliwe odpowiedzi biotyczne obejmowałyby obniżoną aktywność podczas sezonowego spoczynku w norach, albo też inne behawioralne i fizjologiczne mechanizmy takie jak migracja lub stałocieplność. Ponadto, już w roku 2005 Caroline Northwood opisała zróżnicowane koprolity z dolnotriasowej formacji Arcadia w Queensland. Niektórzy badacze sugerowali, że co interesujące Antarktyka była schronieniem dla lądowych czworonogów podczas masowego wymierania pod koniec permu.

Piotr Bajdek

Literatura

Niedźwiedzki, G., Bajdek, P., Qvarnström, M., Sulej, T., Sennikov, A.G., Golubev, V.K., 2016a. Reduction of vertebrate coprolite diversity associated with the end-Permian extinction event in Vyazniki region, European Russia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 450, 77–90. doi: 10.1016/j.palaeo.2016.02.057

Niedźwiedzki, G., Bajdek, P., Owocki, K., Kear, B.P., 2016b. An Early Triassic polar predator ecosystem revealed by vertebrate coprolites from the Bulgo Sandstone (Sydney Basin) of southeastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 464, 5–15. doi: 10.1016/j.palaeo.2016.04.003

Northwood, C., 2005. Early Triassic coprolites from Australia and their palaeobiological significance. Palaeontology 48, 49–68.

Suazo, T.L., Cantrell, A.K., Lucas, S.G., Spielmann, J.A., Hunt, A.P., 2012. Coprolites across the Cretaceous/Tertiary boundary, San Juan Basin, New Mexico. NMMNH Bull. 57, 263–274.

Coprolite Evidence on the Permian–Triassic Extinction Event

[¡Léalo en español!] [Przeczytaj to po polsku!] [pdf file v. 21.12.2016]

coprolite-triassic-australia-1Coprolite of a large carnivore, possibly an archosauromorph, from the Early Triassic of Australia (photo P. Bajdek)

Newest Russian and Australian Papers

So-called mass extinctions are full of mystery and used to constitute one of the most thrilling topics for anyone interested in the history of life. Today, I’ll focus on two recent publications treating the topic of the end-Permian mass-extinction (Niedźwiedzki et al., 2016a) and the recovery of life after this extinction (Niedźwiedzki et al., 2016b). I am the second author of both of these papers and you can see the name of Grzegorz Niedźwiedzki who was our team leader.

Coprolite Diversity and Mass-Extinctions

First, I’d like to mention another interesting study which actually is not mine. Probably the most famous, yet not the largest, mass extinction occured at the end of the Cretaceous Period (around 66 million years ago), when the dinosaurs among many other creatures died out. In 2012, came out a paper of five researchers from the New Mexico Museum of Natural History and Science. The team of Thomas L. Suazo studied the diversity of coprolites, i.e. fossil feces, in five geologic formations of New Mexico: three of them Upper Cretaceous (Campanian and Maastrichthian) and two of them Cenozoic (Paleocene and Eocene) in age.

In contrast to what some may expect, the researchers found out that coprolite morphologies do not change significantly across the Cretaceous–Paleogene boundary and concluded: „This suggests that either none of the preserved coprolites are dinosaurian, or that dinosaurian coprolites are homeomorphic with those of some other vertebrates, such as crocodyles.”

A basic problem in the study of coprolites is that feces used to provide few taxonomic information about their producers. Distinct animal groups sometimes produce quite similar feces, whereas feces of just one individual may vary a lot in appearance and all this is altered by the fossilization process. Comparison of coprolite morphotypes from clearly different paleobiologic contexts, as e.g. distinct geologic periods, may result particularly misleading.

In contrast, the recent study of our team (Niedźwiedzki et al., 2016a) focuses on the diversity of coprolite morphotypes across the Permian–Triassic boundary in several geologic profiles of just a single locality. Noteworthy, the end-Permian mass-extinction (around 252 million years ago) is considered the most severe extinction event ever, with up to 96% of all marine species and 70% of terrestrial vertebrate species becoming extinct.

I have already talked about coprolites from the Vyazniki site, Russia, as they provided possible evidence of hair in therapsids and yielded a great diversity of other microfossils. Rocks of the Vyazniki region allow us study the fauna of the latest Permian and the earliest Triassic. In the new study, we grouped the analyzed specimens (coprolites and possibly some cololites) into nine morphotypes and documented in detail their stratigraphic ranges and the type of sediments their are found in.

We found out that there was indeed a reduction of coprolite diversity. In the earliest Triassic, only three of the nine morphotypes present in the sediments of the uppermost Permian reappeared. However, no taphonomic explanation, such as a significant change in the sedimentation process could be found to explain this reduction of coprolite diversity. In other words, it appears that most of the animals that produced the feces disappeared.

Recovery of Life After the Great Permian Extinction

coprolite-Triassic-Australia-2.jpgCoprolites tells us also about the recovery of life after the end-Permian mass-extinction. The second paper of my authorship which I would discuss in this blog post (Niedźwiedzki et al., 2016b) describes coprolite material recovered from the Bulgo Sandstone which crops out along the coastal cliffs at Long Reef in the northern suburbs of Sydney, Australia. These rocks are lower Olenekian (Lower Triassic) in age what means that the coprolites we studied have been produced by animals that lived just around one million years after the Great Permian Extinction.

We distinguished eleven recurring morphotypes of tetrapod coprolites, as well as one fish bromalite specimen. Some of the coprolite morphotypes were ascribed most likely to archosauromorph reptiles and others to temnospondyl amphibians, whose bone remains are under study now. Undoubtedly, such a diversity of vertebrate fauna is interesting taking in consideration that these animals lived so shortly after the Great Permian Extinction. Let’s now say that by the Early Triassic the Sydney region was located close to the southern polar circle…

In the Early Triassic the climate was actually warmer than it is today and there were no polar ice caps, yet there must have been a reduced insolation at high latitudes. Biotic responses might have included reduced activity levels and estivation in burrows, or perhaps other behavioral and physiological mechanisms such as migration and homeothermy. Moreover, already in 2005, Caroline Northwood described diversified coprolites from the Lower Triassic Arcadia Formation, Queensland. Interestingly, some researchers suggested that Antarctica was a refugium for terrestrial tetrapods from the end-Permian mass extinction.

Piotr Bajdek

References

Niedźwiedzki, G., Bajdek, P., Qvarnström, M., Sulej, T., Sennikov, A.G., Golubev, V.K., 2016a. Reduction of vertebrate coprolite diversity associated with the end-Permian extinction event in Vyazniki region, European Russia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 450, 77–90. doi: 10.1016/j.palaeo.2016.02.057

Niedźwiedzki, G., Bajdek, P., Owocki, K., Kear, B.P., 2016b. An Early Triassic polar predator ecosystem revealed by vertebrate coprolites from the Bulgo Sandstone (Sydney Basin) of southeastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 464, 5–15. doi: 10.1016/j.palaeo.2016.04.003

Northwood, C., 2005. Early Triassic coprolites from Australia and their palaeobiological significance. Palaeontology 48, 49–68.

Suazo, T.L., Cantrell, A.K., Lucas, S.G., Spielmann, J.A., Hunt, A.P., 2012. Coprolites across the Cretaceous/Tertiary boundary, San Juan Basin, New Mexico. NMMNH Bull. 57, 263–274.

Fósiles de parásitos en coprolitos y contenidos estomacales

[Read it in Englishl!] [Przeczytaj to po polsku!] [archivo pdf v. 25.02.2017]

worm-like-structure-coprolite-vyazniki

Enigmática estructura en un coprolito del Pérmico de Rusia (foto K. Owocki; véase Bajdek et al., 2016)

Parásitos en los excrementos fósiles

En las entradas de mi blog ya se ha tratado el tema del significado de los coprolitos, es decir de los excrementos fosilizados, en el estudio de las cadenas alimenticias antiguas y la fisiología de los animales extintos. Los coprolitos son verdaderamente unos fósiles fascinantes por numerosas razones. Por ejemplo, los excrementos a menudo constituyen un microambiente excepcional el cual facilita la preservación de restos en lo extremo delicados, los que de lo contrario, no estarían presentes en las rocas. Primero, abordemos el tema de los fósiles de los pequeños huevos de parásitos y los cuerpos blandos de gusanos.

En 2013 el equipo de Paula C. Dentzien-Dias describió unos bien preservados huevos de céstodos en un bromalito espiralado de un tiburón del Pérmico Medio-Superior de Brasil. El trabajo lo menciono solo brevemente puesto que su versión completa es gratuitamente accesible en línea. Aparte del asombroso estado de preservación de los huevos, en el hallazgo destaca el hecho de que es el registro fósil más antiguo de parásitos en forma de los céstodos. De hecho, Paula C. Dentzien-Dias ya ha publicado tres trabajos importantes sobre los materiales fecales de la formación Rio Do Rasto.

En la última entrada de mi blog se trataba de los fragmentos de huesos y los posibles pelos más antiguos encontrados en los coprolitos pérmicos del sitio de Vyazniki en Rusia. De hecho, esas estructuras parecidas a pelos son de gran importancia y debo admitir que me fue muy grato ver que algunos medios de comunicación, inclusive el National Geographic Traveler, hubieran advertido mis estudios (Bajdek et al., 2016). No obstante, ahora quisiera subrayar que los coprolitos que hemos estudiado han además aportado una gran diversidad de otros microfósiles interesantes, descritos en la misma publicación (Bajdek et al., 2016).

Algunos de ellos representan posibles parásitos, como por ejemplo las alargadas y ovaladas estructuras que típicalmente miden unos 100–150 µm de largo y se interpretaron como posibles huevos de invertebrados. También se encontró una enigmática estructura que asemeja un gusano (foto arriba). Me parece especialmente interesante—sería un fósil de un gusano (como los nemátodos) o quizá una madriguera. Ferreira et al. (1993) describió larvas de nemátodos preservadas en coprolitos del Pleistoceno de Italia. Además, en uno de los coprolitos de Vyazniki hemos encontrado una estructura larga y serpenteante, 6 µm de ancho, la cual identificamos como un túnel.

Estos fósiles podrían indicar que los productores de los coprolitos tenían parásitos en forma de gusanos. Empero, resulta difícil descartar por completo la exploración oportunista de los excrementos por los nemátodos y otros invertebrados después de la excreción. Tales huevos habrían podido pertenecer a los parásitos pero alternativamente podrían ser de organismos coprófagos, como por ejemplo los insectos. Los nemátodos y anélidos descomponen las heces sobre todo en los ambientes húmedos y fríos en donde los insectos coprófagos son menos comunes.

ciliate-coprolite-vyaznikiAdemás, hemos reconocido dos formas distintas de supuestos ciliados (foto en la derecha; K. Owocki; véase Bajdek et al., 2016), de unos 350 µm y 230 µm de largo. Se pudo describir algunos detalles como la forma de la célula y la ubicación y longitud de los cilios. Una vez más, resulta atrayente la interpretación como parásitos pero estos microorganismos habrían podido colonizar la materia fecal después de su excreción.

Dentro de los coprolitos de Vyazniki, se ha además encontrado una diversidad de otros microorganismos, entre los que se incluyeron las bacterias, dos tipos de cianobacterias y los hongos, los cuales en su mayoría no habrían representado parásitos, así como algunos objetos indeterminados, posibles artrópodos y tejidos de plantas. Las cianobacterias y los hongos fueron ingeridos con el alimento y el agua o bien colonizaron la materia fecal después de su excreción. Bacterias preservadas en coprolitos pueden representar la microflora original del tracto gastrointestinal, sin embargo en nuestro trabajo se discute la posibilidad de contaminación por parte de las bacterias ambientales de los sedimentos. El tema del papel de las bacterias en la fosilización de los excrementos se va a abordar en una de las futuras entradas del blog.

En conclusión, los coprolitos pueden constituir una valiosa fuente de muy delicados restos fósiles, incluyendo abundantes microorganismos, los que en otro caso, no suelen ser posibles de detectar en las rocas y de estudiar. Así pues, los coprolitos son una fuente increíblemente rica de la información paleoecológica. Puedo diferenciar tres ramas principales en mis estudios sobre los bromalitos: (a) la paleoecología (o sea, la dieta y otros hábitos de vida de los animales; la reconstrucción paleoambiental; las relaciones ecológicas como el parasitismo, la coprofagía, etc.), (b) la fisiología de los animales extintos, y (c) la tafonomía y fosilización de los excrementos e identificación de los coprolitos.

Con respecto a los fósiles de parásitos y el significado de los bromalitos en general, todavía me queda un hallazgo muy especial por presentar en esta entrada…

Parásitos fósiles en los contenidos estomacales

burrows-gut-contents-jrf-115h

Icnofósiles de posibles parásitos dentro del contenido gástrico de un dinosaurio hadrosáurido del Cretácico de Montana (fuente; véase Tweet et al., 2016)

Para mí personalmente, el hallazgo más espectacular de un dinosaurio jamás hecho. El espécimen JRF 115H, conocido como „Leonardo”, es un esqueleto de un dinosaurio hadrosáurido, Brachylophosaurus canadensis, del Cretácico Superior de la formación Judith River de Montana, EE. UU. Primero que todo, el casi completo esqueleto de Leonardo, encontrado en 2000, representa uno de los más bien escasos dinosaurios “momificados”, lo que significa que está muy bien preservado mostrando algunos tejidos blandos. Además, representa uno de los muy pocos casos conocidos hasta ahora de una posible preservación del contenido estomacal en los dinosaurios herbívoros.

La descripción del probable contenido estomacal de JRF 115H, el cual abarcó fragmentos de hojas de plantas y granos de cuarzo dentro de una masa arcillosa, se publicó ya en 2008. Recientemente, en 2016, salió una nueva publicación en la cual, tras un decenio de trabajo, los paleontólogos estadounidenses (J. Tweet, K. Chin, y A. A. Ekdale) describieron trazas fósiles de posibles parásitos dentro del contenido estomacal de JRF 115H (fotos arriba). Las trazas, de aproximadamente unos 0.3 mm de diámetro, se interpretaron como más probablemente madrigueras. Los investigadores tuvieron que descartar cautelosamente otras posibilidades como trazas de raíces de plantas y los hongos.

Los cuerpos muertos suelen atraer rápido una diversificada fauna de invertebrados necrófagos pero únicamente un solo tipo de traza fósil se encontró en al contenido estomacal de JRF 115H. Además, cabe anotar que el estado de preservación de JRF 115H indica que fue soterrado rápido. Así pues, lo más probable es que el contenido estomacal fue penetrado por (a) gusanos que vivían en el sedimento que soterró el cuerpo del dinosaurio, o bien (b) parásitos del tracto digestivo del hadrosáurido (los cuales sobrevivieron la muerte del huésped, o quizá unos recién eclosionados después de la muerte del huésped).

Finalmente, uno de los aspectos más interesantes de los túneles es que algunos de ellos comparten paredes mostrando cambios idénticos de dirección (foto arriba, en la derecha). Los investigadores sugieren que eso podría indicar un contacto intencional entre los individuos, tal vez con fines reproductivos. ¡Nunca antes en la literatura científica se habían reportado trazas de este tipo!

Más detalles de esta historia pueden conocerse en el blog de Justin Tweet: A locked dinosaur mystery y Reports of gut contents in herbivorous dinosaurs.

Agradecimientos–Agradezco a Justin Tweet y a Karen Chin quienes amablemente me permitieron reproducir las fotos de las trazas fósiles dentro del contenido estomacal de JRF 115H.

Piotr Bajdek

Bibliografía

Bajdek, P., Qvarnström, M., Owocki, K., Sulej, T., Sennikov, A.G., Golubev, V.K., Niedźwiedzki, G., 2016. Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia 49, 455–477. doi: 10.1111/let.12156

Dentzien-Dias, P.C., Poinar, G.Jr., de Figueiredo, A.E.Q., Pacheco, A.C.L., Horn, B.L.D., Schultz, C.L., 2013. Tapeworm Eggs in a 270 Million-Year-Old Shark Coprolite. PLoS ONE 8 (1), e55007. doi: 10.1371/journal.pone.0055007

Ferreira, L.F., Araújo, A., Duarte, A.N., 1993. Nematode larvae in fossilized animal coprolites from Lower and Middle Pleistocene site, Central Italy. The Journal of Parasitology 79, 440–442.

Tweet, J.S., Chin, K., Braman, D.R., Murphy, N.L., 2008. Probable gut contents within a specimen of Brachylophosaurus canadensis (Dinosauria: Hadrosauridae) from the Upper Cretaceous Judith River Formation of Montana. Palaios 23, 624–635. doi: 10.2110/palo.2007.p07-044r

Tweet, J., Chin, K., Ekdale, A.A., 2016. Trace fossils of possible parasites inside the gut contents of a hadrosaurid dinosaur, Upper Cretaceous Judith River Formation, Montana. J. Paleontol. 90 (2), 279–287. doi: 10.1017/jpa.2016.43

Skamieniałości pasożytów w koprolitach i treściach żołądkowych

[Read it in English!] [¡Léalo en español!] [plik pdf v. 08.11.2016]

worm-like-structure-coprolite-vyazniki
Zagadkowa robakokształtna struktura w koprolice z permu Rosji (zdjęcie K. Owocki; patrz Bajdek et al., 2016)

Pasożyty w skamieniałych odchodach

Znaczenie koprolitów, tj. skamieniałych odchodów, w badaniach dawnych łańcuchów pokarmowych i fizjologii wymarłych zwierząt było już omawiane na blogu. Koprolity to rzeczywiście fascynujące skamieniałości z licznych powodów. Dla przykładu, odchody często tworzą szczególne mikrośrodowisko pozwalające na zachowanie się ekstremalnie delikatnych szczątków, w przeciwnym razie nieobecnych w skałach. Przedyskutujmy na początek skamieniałości niewielkich jaj pasożytów i miękkich ciał robaków.

W roku 2013 zespół Pauli C. Dentzien-Dias opisał dobrze zachowane jaja tasiemca w spiralnym bromalicie rekina ze środkowego-górnego permu Brazylii. Jedynie krótko wspominam tę pracę, gdyż jej pełna wersja jest bezpłatnie dostępna online. Poza zadziwiającym stanem zachowania jaj, znalezisko jest interesujące zważywszy, że jest to najwcześniejszy zapis kopalny pasożytów w postaci tasiemców. Paula C. Dentzien-Dias opublikowała w rzeczywistości już trzy ważne prace o fekalnych materiałach z formacji Rio Do Rasto.

W ostatnim wpisie mojego bloga mowa była o fragmentach kości i najstarszych przypuszczalnych włosach znalezionych w górnopermskich koprolitach ze stanowiska Vyazniki w Rosji. Cóż, włosopodobne struktury są ważne i muszę przyznać, że było dla mnie bardzo miło widzieć, że niektóre media, w tym National Geographic Traveler, dostrzegły moje badania (Bajdek et al., 2016). Teraz chciałbym jednakże podkreślić, że koprolity, które zbadaliśmy, dostarczyły bogactwa też innych interesujących mikroskamieniałości opisanych w tej samej publikacji (Bajdek et al., 2016).

Niektóre z nich reprezentują możliwe pasożyty, jak przykładowo pałeczkowate i owalne struktury, typowo o 100–150 µm długości, zinterpretowane jako możliwe jaja bezkręgowców. Znaleźliśmy również pewną zagadkową robakokształtną strukturę (zdjęcie powyżej). Uważam tę strukturę za szczególnie intrygującą—byłaby to skamieniałość ciała robaka (jak nicienia) lub być może nora. Ferreira et al. (1993) opisał larwy nicieni zachowane w koprolitach z plejstocenu Włoch. Ponadto, w jednym koprolicie z Vyaznik znaleźliśmy długą, sinusoidalną strukturę o 6 µm średnicy identyfikując ją jako norę–ślad penetracji odchodów.

Te skamieniałości mogłyby sugerować, że wytwórcy koprolitów mieli pasożyty w postaci robaków. Niemniej, ciężko jest do końca wykluczyć oportunistyczną eksplorację odchodów przez nicienie i inne bezkręgowce po wydaleniu. Takie jaja mogły należeć do pasożytów lub opcjonalnie do organizmów koprofagicznych, jak na przykład owady. Nicienie i pierścienice rozkładają odchody zwłaszcza w wilgotnych i zimnych ekosystemach, gdzie koprofagiczne owady są mniej liczne.

ciliate-coprolite-vyaznikiPonadto, rozpoznaliśmy dwie różne formy przypuszczalnych orzęsków (zdjęcie po prawej; K. Owocki; patrz Bajdek et al., 2016), o 350 µm i 230 µm długości. Dało się opisać pewne szczegóły jak kształt komórki, pozycja i długość rzęsek. Ponownie, interpretacja jako pasożyty jest kusząca, lecz te mikroorganizmy mogły skolonizować materię odchodów po jej wydaleniu.

W koprolitach z Vyaznik znalazła się również różnorodność innych mikroorganizmów ujmując bakterie, dwa rodzaje sinic i grzyby, które w większości nie reprezentowałyby pasożytów, jak również nieco niezidentyfikowanych obiektów, możliwe szczątki stawonogów i tkanki roślinne. Sinice i grzyby zostały wchłonięte z pokarmem i wodą lub też skolonizowały materię odchodów po jej wydaleniu. Bakterie zachowane w koprolitach mogą reprezentować oryginalną mikroflorę przewodu pokarmowego, choć w naszej pracy przedyskutowuje się również możliwość zanieczyszczenia bakteriami ze środowiska z osadów. Rola bakterii w fosylizacji odchodów będzie omówiona w jednym z przyszłych wpisów bloga.

Podsumowując, koprolity mogą stanowić cenne źródło delikatnych szczątków kopalnych, w tym licznych mikroorganizmów, które w przeciwnym razie zazwyczaj są niemożliwe do wykrycia w skałach i zbadania. Koprolity są więc niezwykle bogatym źródłem informacji paleoekologicznych. Wyróżniłbym trzy główne gałęzie w moich badaniach bromalitów: (a) paleoekologia (tj. dieta i inne zwyczaje życiowe zwierząt; rekonstrukcja środowiskowa; relacje ekologiczne jak pasożytnictwo, koprofagia, itd.), (b) fizjologia wymarłych zwierząt, oraz (c) tafonomia i fosylizacja odchodów, oraz identyfikacja koprolitów.

W związku ze skamieniałościami pasożytów i ogólnie znaczeniem bromalitów, pozostaje jeszcze jedno bardzo szczególne znalezisko do przedstawienia w tym wpisie…

Skamieniałości pasożytów w treściach żołądkowych

burrows-gut-contents-jrf-115h

Ślady możliwych pasożytów wewnątrz treści żołądkowej dinozaura z grupy hadrozaurydów z kredy Montany (źródło; patrz Tweet et al., 2016)

Dla mnie osobiście, najbardziej niesamowite znalezisko dinozaura w historii. Okaz JRF 115H, znany jako „Leonardo”, to szkielet nie w pełni dorosłego dinozaura z grupy hadrozaurydów, Brachylophosaurus canadensis, z górnokredowej formacji Judith River z Montany, USA. Po pierwsze, prawie kompletny szkielet Leonarda, znaleziony w roku 2000, reprezentuje jeden z raczej niewielu „zmumifikowanych” dinozaurów, co znaczy, że jest wspaniale zachowany ukazując nieco tkanek miękkich. Reprezentuje ponadto jeden z kilku tylko znanych możliwych przypadków zachowania się treści żołądkowej u roślinożernych dinozaurów.

Opis prawdopodobnej treści żołądkowej JRF 115H, która objęła fragmenty liści i ziarna kwarcu zanurzone w ilastym matriksie, opublikowany był już w roku 2008. Ostatnio, w roku 2016, ukazała się nowa praca, w której po dekadzie pracy paleontolodzy z USA (J. Tweet, K. Chin, oraz A. A. Ekdale) opisują skamieniałości śladowe możliwych pasożytów wewnątrz treści żołądkowej JRF 115H (zdjęcia powyżej). Ślady, o średnicy ok. 0.3 mm, zinterpretowane są jako najprawdopodobniej nory. Badacze musieli ostrożnie wykluczyć inne możliwości jak ślady korzeni roślin i grzyby.

Większość ciał szybko przyciąga różnorodną faunę bezkręgowcowych padlinożerców, lecz tylko jeden rodzaj skamieniałości śladowej był znaleziony w treści żołądkowej JRF 115H. Trzeba też zauważyć, że stan zachowania JRF 115H sugeruje, że został szybko pogrzebany. Tak więc bardziej prawdopodobne jest, że treść żołądkowa była spenetrowana przez albo (a) robaki żyjące w osadzie, który pogrzebał ciało dinozaura, albo (b) pasożyty przewodu pokarmowego hadrozauryda (które przeżyły jego śmierć, albo też nowo wyklute, które wyłoniły się po śmierci dinozaura).

W końcu, jednym z najbardziej interesujących aspektów tych śladów  jest, że niektóre z nich współdzielą ścianki ukazując identyczne zmiany kierunku (zdjęcie powyżej, po prawej). Badacze sugerują, że może to oznaczać celowy kontakt pomiędzy osobnikami, być może w celach rozrodczych. Ślady tego rodzaju nigdy wcześniej nie były odnotowane w literaturze naukowej!

Historię tę można zgłębić na blogu Justina Tweeta: A locked dinosaur mystery oraz Reports of gut contents in herbivorous dinosaurs.

Podziękowania–Dziękuję Justinowi Tweetowi i Karen Chin, za których uprzejmością mogłem reprodukować zdjęcia skamieniałości śladowych w treści żołądkowej JRF 115H.

Piotr Bajdek

Literatura

Bajdek, P., Qvarnström, M., Owocki, K., Sulej, T., Sennikov, A.G., Golubev, V.K., Niedźwiedzki, G., 2016. Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia 49, 455–477. doi: 10.1111/let.12156

Dentzien-Dias, P.C., Poinar, G.Jr., de Figueiredo, A.E.Q., Pacheco, A.C.L., Horn, B.L.D., Schultz, C.L., 2013. Tapeworm Eggs in a 270 Million-Year-Old Shark Coprolite. PLoS ONE 8 (1), e55007. doi: 10.1371/journal.pone.0055007

Ferreira, L.F., Araújo, A., Duarte, A.N., 1993. Nematode larvae in fossilized animal coprolites from Lower and Middle Pleistocene site, Central Italy. The Journal of Parasitology 79, 440–442.

Tweet, J.S., Chin, K., Braman, D.R., Murphy, N.L., 2008. Probable gut contents within a specimen of Brachylophosaurus canadensis (Dinosauria: Hadrosauridae) from the Upper Cretaceous Judith River Formation of Montana. Palaios 23, 624–635. doi: 10.2110/palo.2007.p07-044r

Tweet, J., Chin, K., Ekdale, A.A., 2016. Trace fossils of possible parasites inside the gut contents of a hadrosaurid dinosaur, Upper Cretaceous Judith River Formation, Montana. J. Paleontol. 90 (2), 279–287. doi: 10.1017/jpa.2016.43

Notes on fossil parasites in coprolites and gut contents

[¡Léalo en español!] [Przeczytaj to po polsku!] [pdf file v. 08.11.2016]

worm-like-structure-coprolite-vyazniki
Enigmatic worm-like structure in a coprolite from the Permian of Russia (photo by K. Owocki; see Bajdek et al., 2016)

Parasites in fossil feces

The significance of coprolites, i.e. fossil feces, in the study of ancient food chains and physiology of extinct animals has been already discussed on the blog. Coprolites are indeed fascinating fossils for a number of reasons. For instance, feces often constitute an exceptional microenvironment allowing the preservation of extremely delicate remains, otherwise absent in the rocks. Let’s firstly discuss fossils of minute parasite eggs and soft bodies of worms.

In 2013, the team led by Paula C. Dentzien-Dias described well-preserved tapeworm eggs in a shark spiral bromalite from the Middle-Upper Permian of Brazil. I just briefly mention this paper because its full-version is freely available online. Apart from the amazing state of preservation of the eggs, it’s an interesting find as this is the earliest fossil record of tapeworm parasitism. In fact, Paula C. Dentzien-Dias has already published three important papers on the fecal material from the Rio Do Rasto Formation.

In the recent post of my blog I talked about bone fragments and the oldest possible hairs found in Upper Permian coprolites from the Vyazniki site, Russia. Well, the hair-like structures are important and I must admit I was very happy to see some media, including the National Geographic Traveler, to have noticed my research (Bajdek et al., 2016). However, I would like to highlight now that the coprolites we have studied have moreover yielded a great diversity of other interesting microfossils, described in the same publication (Bajdek et al., 2016).

Some of them represent possible parasites, as for example the rod-shaped and oval structures, typically 100–150 µm in length, which are interpreted as possible invertebrate eggs. Also, an enigmatic worm-like structure was found (picture above). I find this structure especially intriguing—it would be a worm body fossil (as a nematode) or alternatively a burrow. Ferreira et al. (1993) described nematode larvae preserved in coprolites from the Pleistocene of Italy. Moreover, a long, sinuous, 6 µm wide structure was found in one coprolite specimen from Vyazniki and indentified as a burrow.

These fossils might suggest that the coprolite producers had worm parasites. Yet, it’s hard to rule out entirely the opportunistic exploitation of feces by nematodes and other invertebrates after excretion. Such eggs could have belonged to parasites but alternatively they could be of coprophagous organisms, as for example insects. Nematodes and annelids decompose feces mostly in humid and cold ecosystems where coprophagous insects are less common.

ciliate-coprolite-vyaznikiMoreover, two different forms of putative ciliates were recognized (photo on the right; by K. Owocki; see Bajdek et al., 2016), 350 µm and 230 µm long. Some details as the cell shape and the position and length of cilia could be described. Once again, the interpretation as parasites is tantalizing but these microorganisms could have colonized the fecal matter after its excretion.

Within the coprolites from Vyazniki, there was also found a diversity of other microorganisms including bacteria, two kinds of cyanobacteria, and fungi, which would mostly have not represented parasites, as well as some indeterminate objects, possible arthropod remains and plant tissues. Cyanobacteria and fungi have been swallowed with food and water or colonized the fecal matter after its excretion. Bacteria preserved in coprolites may represent original microbiota of the gastrointestinal tract, yet our paper also discusses the possibility of contamination by environmental bacteria from the sediments. The role of bacteria in the fossilization of feces will be discussed in one of the forthcoming posts of the blog.

In conclusion, coprolites may constitute a valuable source of delicate fossil remains, including abundant microorganisms, otherwise usually impossible to detect in the rocks and study. Thus, coprolites are an incredibly rich source of paleoecologic information. I would differentiate three principal branches in my research on bromalites: (a) paleoecology (i.e. diet and other life habits of the source animals; environmental reconstruction; ecological relationships like parasitism, coprophagy, etc.), (b) physiology of the source animals, and (c) taphonomy and fossilization of feces and identification of coprolites.

In regard to fossil parasites and the significance of bromalites in general, there’s one very special find yet to be presented in this post…

Fossil parasites in gut contents

burrows-gut-contents-jrf-115h

Trace fossils of possible parasites inside the gut contents of a hadrosaurid dinosaur from the Cretaceous of Montana (source; see Tweet et al., 2016)

To me personally, the most amazing dinosaur find ever. The specimen JRF 115H, known as „Leonardo”, is a skeleton of a subadult hadrosaurid dinosaur, Brachylophosaurus canadensis, from the Upper Cretaceous Judith River Formation of Montana, USA. First of all, the nearly complete skeleton of Leonardo, found in 2000, represents one of rather few „mummified” dinosaurs, what means that it’s excellently preserved showing some soft tissues. It moreover represents one of just a couple of known possible cases of preservation of gut contents in herbivorous dinosaurs.

Description of the probable gut contents of JRF 115H, which included leaf fragments and quartz grains encased in a clay matrix, was published back in 2008. Recently, in 2016, after a decade of work, came out a new paper in which paleontologists from the USA (J. Tweet, K. Chin, and A. A. Ekdale) describe trace fossils of possible parasites inside the gut contents of JRF 115H (photos above). The traces, about 0.3 mm in diameter, are interpreted most likely as burrows. The researchers had to carefully rule out other possibilities as traces of plant roots and fungi.

Most carcasses quickly attract a varied fauna of invertebrate scavengers, but only one type of trace fossil was found in the gut contents of JRF 115H. It should be also noticed that the state of preservation of JRF 115H suggests that it was buried rapidly. Thus, more likely the gut contents were burrowed either by (a) worms living in the sediment that buried the dinosaur carcass or (b) parasites of the gastrointestinal tract of the hadrosaurid (which survived the host’s death, or else newly hatched ones that emerged after the dinosaur’s death).

Finally, one of the most interesting aspects of the traces is that some of them share walls showing identical changes in direction (picture above, on the right). The researchers suggest that it may reveal intentional contact between individuals, perhaps for mating. Traces of this kind have been never reported before in the scientific literature!

You can continue reading this story on the Justin Tweet’s blog: A locked dinosaur mystery and Reports of gut contents in herbivorous dinosaurs.

Acknowledgments–I thank Justin Tweet and Karen Chin who kindly permitted me to reproduce the images of the trace fossils in the gut contents of JRF 115H.

Piotr Bajdek

References

Bajdek, P., Qvarnström, M., Owocki, K., Sulej, T., Sennikov, A.G., Golubev, V.K., Niedźwiedzki, G., 2016. Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia 49, 455–477. doi: 10.1111/let.12156

Dentzien-Dias, P.C., Poinar, G.Jr., de Figueiredo, A.E.Q., Pacheco, A.C.L., Horn, B.L.D., Schultz, C.L., 2013. Tapeworm Eggs in a 270 Million-Year-Old Shark Coprolite. PLoS ONE 8 (1), e55007. doi: 10.1371/journal.pone.0055007

Ferreira, L.F., Araújo, A., Duarte, A.N., 1993. Nematode larvae in fossilized animal coprolites from Lower and Middle Pleistocene site, Central Italy. The Journal of Parasitology 79, 440–442.

Tweet, J.S., Chin, K., Braman, D.R., Murphy, N.L., 2008. Probable gut contents within a specimen of Brachylophosaurus canadensis (Dinosauria: Hadrosauridae) from the Upper Cretaceous Judith River Formation of Montana. Palaios 23, 624–635. doi: 10.2110/palo.2007.p07-044r

Tweet, J., Chin, K., Ekdale, A.A., 2016. Trace fossils of possible parasites inside the gut contents of a hadrosaurid dinosaur, Upper Cretaceous Judith River Formation, Montana. J. Paleontol. 90 (2), 279–287. doi: 10.1017/jpa.2016.43