El origen de la endotermia en los mamíferos

[Read it in English!] [Przeczytaj to po polsku!] [archivo pdf v. 30.09.2016]

hair-coprolite-Vyazniki
Probable pelo en un coprolito de un terápsido del Pérmico de Rusia (foto K. Owocki; véase Bajdek et al., 2016)

Ectotérmico o endotérmico

Hay una obvia diferencia entre los reptiles de hoy y los mamíferos siendo los primeros ectotérmicos y los segundos endotérmicos: mientras que la temperatura corporal de los reptiles depende de la temperatura ambiental, en los mamíferos está siendo regulada de tal manera que se mantega casi constante. También podemos notar que: (1) los mamíferos tienen pelaje al contrario de los reptiles y (2) los reptiles se caracterizan por una digestión mucho más larga (un metabolismo más lento) que los mamíferos de una comparable masa corporal. En consecuencia, muchos reptiles modernos mantienen el estilo de vida “menos energético” que los mamíferos.

Las cosas se vuelven menos obvias cuando vamos para atrás en el tiempo… Los mamíferos evolucionaron en el período Triásico, y los interrogantes que surgen ante los paleontólogos son: ¿cuándo apareció la endotermia en su línea evolutiva? ¿Eran ya endotérmicos los ancestros de los mamíferos (los llamados terápsidos o reptiles mamiferoides) de los finales del Paleozoico y los comienzos del Mesozoico?

En los años 1970 el paleontólogo estadounidense Robert T. Bakker publicó unas ideas innovadoras acerca de la fisiología de los reptiles mamiferoides (y los dinosaurios). Hipotetizó que los terápsidos poseían pelaje y aportó algunos argumentos a favor de que eran endotérmicos: (1) Los huesos de los terápsidos carecían de anillos del crecimiento y en cambio tenían los vasos sanguíneos y conductos de Havers densamente distribuidos. (2) Algunos de ellos habitaban zonas frías del clima templado. (3) La robusta contextura del cuerpo de muchos terápsidos habría facilitado la conservación del calor. (4) Las proporciones de los depredadores frente a las presas dependen de los requerimientos energéticos de los depredadores, siendo en los terápsidos más bajas que en los animales ectotérmicos.

Las ideas de R.T. Bakker acerca de la fisiología de los terápsidos (y los dinosaurios) han sido aceptadas por la mayoría de los paleontólogos y son ampliamente conocidas. Sin embargo, puesto que muchas de ellas se basan en evidencias más bien indirectas, seguimos buscando nuevos indicios. Los coprolitos, es decir los excrementos fosilizados, siendo subproductos del metabolismo aportan tales nuevos y valiosos datos acerca del metabolismo de sus productores. En los últimos años el estudio de los coprolitos de hecho ha arrojado nueva luz sobre la fisiología de los ancestros de los mamíferos y sus parientes. Por ejemplo, en el artículo sobre los coprolitos del dicinodonte gigante del Triásico de Polonia se argumenta que esos terápsidos herbívoros desdentados tenían un metabolismo bastante lento.

En 2016 otro pedazo del rompecabezas de la endotermia de los mamíferos se agregó cuando nuestro equipo, compuesto por siete investigadores de Polonia, Suecia y Rusia (P. Bajdek, M. Qvarnström, K. Owocki, T. Sulej, A.G. Sennikov, V.K. Golubev y G. Niedźwiedzki), publicó un nuevo trabajo sobre los coprolitos. Los coprolitos que hemos estudiado fueron producidos por los terápsidos carnívoros del Pérmico Tardío, más de 252 milliones de años atrás, y hallados durante las excavaciones polaco-rusas en el sitio de Vyazniki en la parte europea de Rusia.

Los huesos indigeridos y el metabolismo rápido

En el sitio de Vyazniki se han encontrado varios morfotipos de coprolitos (los cuales pronto se discutirán nuevamente en el blog). Nuestro trabajo de 2016 se enfoca solamente en dos morfotipos de coprolitos grandes: A y B. Mientras que los fragmentos indigeridos de huesos están presentes en los coprolitos del tipo A, se muestran escasos y muy degradados en los coprolitos del tipo B. Como se ha dicho arriba, los reptiles se caracterizan por una digestión mucho más prolongada que los mamíferos así que, por ejemplo, los cocodrilos suelen digerir los huesos ingeridos prácticamente por completo. En cambio, los huesos indigeridos comúnmente se encuentran dentro de los excrementos de los mamíferos. Siguiendo estos argumentos, nos cautiva descubrir que los coprolitos del tipo A, abundantes en huesos, habrían sido producidos por algunos animales de un metabolismo rápido.

De esta manera, en 2012 el equipo de Krzysztof Owocki y Grzegorz Niedźwiedzki atribuyó los coprolitos del tipo A, abundantes en huesos, a los terápsidos carnívoros y los coprolitos del tipo B, escasos en huesos, a los arcosauromorfos u otro carnívoros no terápsidos. Los dos terápsidos y arcosauromorfos se encuentran en el registro fósil de Vyazniki, sin embargo se esperaría más bien que los terápsidos fueran los animales del metabolismo rápido y no los primeros arcosauromorfos (ancestros de los cocodrilos modernos y las aves). Esta interpretación la sustentan los hallazgos del Pérmico Tardío de Suráfrica. Ya en 2011 gracias al contexto paleobiológico Roger M.H. Smith y Jennifer Botha-Brink pudieron atribuirles a los terápsidos carnívoros algunos morfotipos de coprolitos abundantes en huesos, provenientes del Pérmico Superior de Suráfrica.

Los pelos más antiguos

Los investigadores de Suráfrica han encontrado algo más que tan solo los huesos en los coprolitos pérmicos. Algunos coprolitos contienen unas enigmáticas estructuras alargadas las cuales miden en promedio unos 14 μm de diámetro y alcanzan hasta unos 5 mm de largo. Roger M.H. Smith y Jennifer Botha-Brink sugirieron que estas estructuras eran restos de plantas, hongos o, tal vez, pelos. Resultó excitante para nuestro equipo encontrar unas estructuras comparables en un coprolito de terápsido del Pérmico Superior de Vyazniki en Rusia. Las hemos estudiado minuciosamente con el uso de los microscopios de luz y electrónico, inclusive la geoquímica de ellas. Las estructuras de Rusia que describimos tienen el diámetro diez veces más grande que las de Suráfrica, la más grande alcanzando más de 5 mm de largo. Se interpretan como moldes de objetos semejantes a pelos; ¡algunos e incluso parecen poseer las raíces bifurcadas de pelos! Los pelos son muy resistentes a la digestión y a menudo se encuentran en los excrementos de los carnívoros modernos.

Si esta interpretación es cierta, estos pelos son dos veces más antiguos que el más antiguo registro de pelos conocido hasta ahora en los mamíferos del Jurásico y Cretácico y revelan que algunos terápsidos adquirieron un aislamiento a los finales del Paleozoico, así pues antes de que aparecieran los mamíferos. Probablemente, el pelaje tenía la función termorreguladora a manera de un aislamiento térmico. Ciertos investigadores han además sugerido que los pelos podrían ser de origen táctil. En 1968 G.H. Findlay supuso que las perforaciones presentes en el cráneo del terápsido Olivera parringtoni del Pérmico Tardío de hecho revelan la presencia de los pelos táctiles. Tales pelos serían de una gran utilidad especialmente si los mamíferos descienden de los reptiles nocturnos. Los pelos podrían suplir la mala vista y además facilitar la conservación del calor en la noche.

Los descubrimientos de Suráfrica y Rusia revelan que los terápsidos carnívoros del Pérmico Tardío habían desarrollado (1) un aislamiento térmico (pelaje) y (2) un metabolismo acelerado. Tomados en conjunto, estos rasgos nos permiten suponer que los ancestros de los mamíferos en el Paleozoico tardío eran ya unos animales endotérmicos.

Piotr Bajdek 1 y Martin Qvarnström 2
1 Częstochowa, Polonia
2 Uppsala University, Suecia

Bibliografía

Bajdek, P., Owocki, K., Niedźwiedzki, G., 2014. Putative dicynodont coprolites from the Upper Triassic of Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 411, 1–17. doi: 10.1016/j.palaeo.2014.06.013

Bajdek, P., Qvarnström, M., Owocki, K., Sulej, T., Sennikov, A.G., Golubev, V.K., Niedźwiedzki, G., 2016. Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia 49, 455–477. doi: 10.1111/let.12156

Bakker, R.T., 1971. Dinosaur physiology and the origin of mammals. Evolution 25, 636–658.

Bakker, R.T., 1975. Dinosaur renaissance. Scientific American 232, 58–78.

Findlay, G.H., 1968. On the scaloposaurid skull of Oliviera parringtoni, Brink with a note on the origin of hair. Palaeontologia Africana 11, 47–59.

Owocki, K., Niedźwiedzki, G., Sennikov, A.G., Golubev, V.K., Janiszewska, K., Sulej, T., 2012. Upper Permian vertebrate coprolites from Vyazniki and Gorokhovets, Vyatkian regional stage, Russian Platform. Palaios 27, 867–877. doi: palo.2012.p12-017r

Smith, R.M.H., Botha-Brink, J., 2011. Morphology and composition of bone-bearing coprolites from the Late Permian Beaufort Group, Karoo Basin, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 312, 40–53. doi: 10.1016/j.palaeo.2011.09.006
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s