The origin of mammalian endothermy

[¡Léalo en español!] [Przeczytaj to po polsku!] [Läs den på svenska!] [pdf file]

hair-coprolite-Vyazniki.jpg
Probable hair in a therapsid coprolite from the Permian of Russia (photo by K. Owocki; see Bajdek et al., 2015)

Ectothermic or endothermic

An obvious difference between modern reptiles and mammals is that the former are ectotherms and the latter endotherms: whereas the body temperature of reptiles is dependent on the prevailing environmental temperatures, it is regulated to remain nearly constant in mammals. We can also note that: (1) mammals have fur and reptiles do not, and (2) reptiles are characterized by a much longer digestion (slower metabolism) than mammals of a comparable body mass. As a consequence, many modern reptiles have a “lower-energy” lifestyle than mammals.

It becomes less obvious when we go back in time… Mammals evolved in the Triassic Period, and questions paleontologists ask themselves are: when did the endothermy in their evolutionary lineage appear? Were already the late Palaeozoic and early Mesozoic ancestors of mammals (called therapsids or mammal-like reptiles) endothermic?

In the 1970s, the American paleontologist Robert T. Bakker published innovative ideas on the physiology of mammal-like reptiles (and dinosaurs). He hypothesized that therapsids had fur and provided several lines of evidence that they were endotherms: (1) Therapsid bones lacked growth rings and had closely packed blood vessels and Haversian canals. (2) Some of them were distributed in cold temperate zones. (3) Short, stocky body proportions in many therapsids might have been a device to conserve heat. (4) Their predator–prey ratios, which depend on the energetic requirements of the predators, were lower than those of ectotherms.

R.T. Bakker’s ideas on the physiology of therapsids (and dinosaurs) have been accepted by most paleontologists and are well-known to the public. Nevertheless, because many of them are rather indirect lines of evidence, we now seek for new clues. Coprolites, i.e. fossil feces, being metabolistic byproducts provide such new and valuable data on the metabolism of their producers. In fact, the study of coprolites has during the last couple of years shed new light on the physiology of mammalian ancestors. For example, it was argued in the article on coprolites of a giant dicynodont from the Triassic of Poland, that these herbivorous and toothless therapsids had a rather slow metabolism.

Furthermore, in 2015, another piece of the puzzle of mammalian endothermy was added when our team composed of seven researchers from Poland, Sweden, and Russia (P. Bajdek, M. Qvarnström, K. Owocki, T. Sulej, A.G. Sennikov, V.K. Golubev, and G. Niedźwiedzki) published a new paper on coprolites. The coprolites we studied were produced by Late Permian carnivorous therapsids, over 252 million years ago, and excavated during a Polish–Russian expedition to the Vyazniki site, European Russia.

Undigested bones and the fast metabolism

The Vyazniki site has yielded various morphotypes of coprolites (which will soon be discussed again on the blog). Our paper from 2015 focuses on only two big coprolite morphotypes: A and B. Whereas undigested bone fragments are present in the type-A coprolites, they are quite rare and highly degraded in the type-B coprolites. As said above, reptiles are characterized by a much longer digestion than mammals, and, for example, crocodiles practically completely digest the bones they ingest. On the contrary, undigested bones are commonly found in the feces of mammals. Following these arguments, the bone-rich coprolites of type A would have interestingly been produced by some kind animals of a fast metabolism.

As such, the team of Krzysztof Owocki ascribed, in 2012, the bone-rich type-A coprolites to therapsid carnivores and the bone-barren type-B coprolites to archosauromorphs or other non-therapsid carnivores. Both therapsids and archosauromorphs are known from the fossil record of Vyazniki, but therapsids would have been more expected to have a fast metabolism than early archosauromorphs (ancestors of modern crocodiles and birds). This interpretation is supported by finds from the Upper Permian of South Africa. Already in 2011, the paleobiological context allowed Roger M.H. Smith and Jennifer Botha-Brink to link several bone-rich coprolite morphotypes from the Upper Permian of South Africa to carnivorous therapsids.

The oldest hairs

The researchers from South Africa have found more than just bones in the Permian coprolites. Some coprolites contain enigmatic elongated structures, that are on average 14 μm in diameter and reaching up to 5 mm in length. Roger M.H. Smith and Jennifer Botha-Brink suggested that these structures were remains of plants, fungi or, perhaps, hairs. It was exciting to our team to find comparable structures in a therapsid coprolite from the Upper Permian of Vyazniki, Russia. By the use of light and scanning electron microscopes we studied them in great detail, including their geochemistry. The structures we described from Russia are ten time larger in diameter than those from South Africa, and the largest one is over 5 mm long. They are interpreted as molds of hair-like elements; some even appear to show bifurcated hair roots! Hairs are well-resistant to digestion and often found in feces of modern carnivores.

If this interpretation is correct, these hairs are two times older than the previously earliest record of known hairs from Jurassic-Cretaceous mammals and imply that some therapsids had acquired insulation by the latest Paleozoic, prior to the rise of mammals. Hairs would probably have had a thermoregulatory function, as an insulation. Some researchers have also suggested that hairs could be tactile in origin. In 1968, G.H. Findlay hypothesized that perforations present in a skull of the Late Permian therapsid Olivera parringtoni reveal the presence of tactile hairs. Such hairs could have been of great use especially if mammals are descended from nocturnal reptiles. Hairs would make up for poor vision and moreover allow to conserve heat at night.

The discoveries from South Africa and Russia suggest that Late Permian therapsid carnivores had developed (1) an insulation (fur) and (2) an accelerated metabolism. Taken together, these features make us suspect that the late Paleozoic ancestors of mammals were already endotherms.

Piotr Bajdek 1 and Martin Qvarnström 2
1 Częstochowa, Poland
2 Uppsala University, Sweden

References

Bajdek, P., Owocki, K., Niedźwiedzki, G., 2014. Putative dicynodont coprolites from the Upper Triassic of Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 411, 1–17. doi: 10.1016/j.palaeo.2014.06.013

Bajdek, P., Qvarnström, M., Owocki, K., Sulej, T., Sennikov, A. G., Golubev, V. K., Niedźwiedzki, G., 2015. Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia. doi: 10.1111/let.12156

Bakker, R.T., 1971. Dinosaur physiology and the origin of mammals. Evolution 25, 636–658.

Bakker, R.T., 1975. Dinosaur renaissance. Scientific American 232, 58–78.

Findlay, G.H., 1968. On the scaloposaurid skull of Oliviera parringtoni, Brink with a note on the origin of hair. Palaeontologia Africana 11, 47–59.

Owocki, K., Niedźwiedzki, G., Sennikov, A.G., Golubev, V.K., Janiszewska, K., Sulej, T., 2012. Upper Permian vertebrate coprolites from Vyazniki and Gorokhovets, Vyatkian regional stage, Russian Platform. Palaios 27, 867–877. doi: palo.2012.p12-017r

Smith, R.M.H., Botha-Brink, J., 2011. Morphology and composition of bone-bearing coprolites from the Late Permian Beaufort Group, Karoo Basin, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 312, 40–53. doi: 10.1016/j.palaeo.2011.09.006

Los depredadores marinos, los monstruos marinos

coprolite ZPAL Tf.6 Cretaceous Poland, from Bajdek 2013
Coprolito de un depredador marino con fragmentos de conchas de bivalvos, Cretácico Superior, Polonia (reproducido de Bajdek, 2013)

Las cadenas alimenticias marinas

Los ictiosaurios eran unos reptiles mesozoicos extraordinariamente bien adaptados para la vida en el agua. Debido a su hidrodinámica forma del cuerpo, se cree que los ictiosarios se alimentaban de una presa ágil y rápida. En efecto, los contenidos estomacales de ictiosarios del Jurásico Inferior de Lyme Regis y Charmouth en Inglaterra, así como Holzmaden en Alemania, contienen restos de los belemnites, o sea unos cefalópodos fusiformes semejantes a los calamares de hoy.

Ciertas acumulaciones de los rostros de belemnites se interpretan como los regurgitalitos (vómitos fosilizados) de ictiosaurios. Por ejemplo, tal acumulación del Jurásico de Peterborough en Inglaterra fue presentada en 2001 por Peter Doyle y Jason Wood. Puesto que parece improbable que los fuertes y filudos rostros atravesaran el entero tracto digestivo y fueran expelidos en la forma de excrementos, el hallazgo se interpretó como un regurgitalito del ictiosaurio. Esta interpretación las corroboran las huellas de digestión en las superficies de los rostros, y también el hecho de que en su mayoría pertenecían a unos individuos juveniles.

Resultó sorpresivo el contenido estomacal de un ictiosaurio del Albiense Superior (Cretácico Inferior) de la formación Toolebuc de Queensland que describió en 2003 un equipo de investigadores dirigido por Benjamin P. Kear. Aparte de las espinas de peces, en el estómago se encontraron los restos de una tortuga y un ave. Los fósiles de tortugas son abundantes en esas rocas; también parece que la tortuga era una presa fácil. El ave fue consumida probablemente en la forma de carroña. Es posible que los hábitos alimenticios de los ictiosaurios fueran mucho más flexibles de lo que se creía anteriormente. El hallazgo es también interesante porque se trata de uno de los últimos ictiosaurios – al final del Cenomaniense, unos 10 millones de años más tarde, los ictiosaurios se extinguieron. Se especulaba que la especialización alimentaria de los ictiosaurios fue uno de los factores contribuyentes a su extinción. Empero, esta explicación parece incongruente con el descubrimiento de la formación Toolebuc.

¿Qué comían las tortugas cf. Notochelone, de las cuales se alimentaban los ictiosaurios? Las tortugas cretácicas de la familia Protostegidae son un grupo extinto cuya dieta permanecía desconocida. Sin embargo, tres años después Benjamin P. Kear describió los contenidos estomacales y los coprolitos (excrementos fosilizados) de las tortugas de la formación Toolebuc. Contenían unas conchas fragmentadas de bivalvos de la familia Inoceramidae. Puesto que los bivalvos eran organismos bentónicos, es decir que vivían en el suelo del mar, las conclusiones una vez más difirieron de las expectativas. Se suponía que esas tortugas eran unos depredadores pelágicos que se alimentaban con los ammonites en la columna del agua.

Tomados en conjunto, los descubrimientos de la formación australiana Toolebuc proporcionan una oportunidad especial para echar un vistazo a las cadenas alimenticias del pasado, las cuales abarcaron las tortugas que comían los bivalvos, así como los ictiosaurios que se alimentaban de las tortugas, peces, e incluso de la carroña de aves.

Las profundidades marinas

En 2013 describí un coprolito del Cretácico Superior de los montes Cárpatos de Polonia. Así como los coprolitos de Australia, el posible coprolito de Polonia contiene conchas fragmentadas de bivalvos de la familia Inoceramidae. Desafortunadamente, resulta difícil especificar qué animal lo produjo: aunque no se pueda descartar un reptil, la explicación más sencilla parece ser un pez teleósteo. Al contrario de los especímenes de Australia, los que provienen de los sedimentos de un mar somero, el coprolito del flysch de los Cárpatos fue hallado en rocas formadas en las profundidades marinas. Su contexto geológico de veras es interesante. Los excrementos fueron soterrados bajo los sedimentos de la llamada corriente turbidítica, es decir una avalancha submarina que transporta los sedimentos a las profundidades marinas. El espécimen es interesante también porque contiene unas numerosas conchas mientras que en las rocas de las que proviene los macrorestos de animales son extremadamente escasos. Los excrementos constituyen una acumulación excepcional de los restos. Los residuos alimentarios pueden ser además transportados en el tracto digestivo del producente de las heces a cierta distancia, inclusive a un ambiente distinto.

Las presas juveniles

En 2015 un equipo de investigadores encabezado por David R. Schwimmer describió un interesante hallazgo del Cretácico Superior de Carolina del Sur. El bromalito espiral, es decir los excrementos o el molde interno intestinal, contiene en parte articuladas vértebras de una tortuga joven de agua dulce. Debido a las dimensiones pequeñas del bromalito, los investigadores sugieren que el mismo tiburón era juvenil también. Estas observaciones tendrían unas interesantes implicaciones ecológicas demostrando que el tiburón se alimentaba cerca de un ambiente fluvial de agua dulce y los sitios de reproducción de las tortugas. Inclusive, los investigadores consideran la posibilidad de que los juveniles tiburones remontaran el río.

Los contenidos estomacales de los plesiosaurios revelan restos de los ammonites, belemnites, bivalvos y peces. Un hallazgo inusual de Wyoming se describió en 2009. El estómago de un plesiosaurio del Jurásico Superior contenía restos de un ictiosaurio. Para ser precisos, ¡era un embrión de un ictiosaurio no nacido!

Piotr Bajdek

Bibliografía

Bajdek, P. 2013. Coprolite of a durophagous carnivore from the Upper Cretaceous Godula Beds, Outer Western Carpathians, Poland. Geological Quarterly 57 (2): 361–364. doi: 10.7306/gq.1094

Kear, B.P. 2006. First gut contents in a Cretaceous sea turtle. Biology Letters 2: 113–115. doi: 10.1098/rsbl.2005.0374

Kear, B.P., Boles, W.E., and Smith, E.T. 2003. Unusual gut contents in a Cretaceous ichthyosaur. Proc. R. Soc. Lond. B (Suppl.) 270: 206–208. doi: 10.1098/rsbl.2003.0050

Lomax, D.R. 2010. An Ichthyosaurus (Reptilia, Ichthyosauria) with gastric contents from Charmouth, England: first report of the genus from the Pliensbachian. Paludicola 8 (1): 22–36.

Nature News, 12 February 2002. Jurassic vomit comes up at meeting. doi: 10.1038/news020211-3

O’Keefe, F.R., Street, H.P., Cavigelli, J.P., Socha, J.J., and O’Keefe, R.D. 2009. A plesiosaur containing an ichthyosaur embryo as stomach contents from the Sundance Formation of the Bighorn basin, Wyoming. Journal of Vertebrate Paleontology 29 (4): 1306–1310.

Schwimmer, D.R., Weems, R.E., and Sanders, A.E. 2015. A Late Cretaceous shark coprolite with baby freshwater turtle vertebrae inclusions. Palaios 30: 707–713. doi: 10.2110/palo.2015.019

The marine predators, the marine monsters

coprolite ZPAL Tf.6 Cretaceous Poland, from Bajdek 2013
Coprolite of a marine carnivore with bivalve shell fragments, Upper Cretaceous, Poland (reproduced from Bajdek, 2013)

Marine food chains

The ichthyosaurs were an extraordinarily adapted to life in water group of reptiles of the Mesozoic Era. Due to the hydrodynamic body shape, it’s commonly believed that the ichthyosaurs preyed on agile and fast animals. Indeed, the ichthyosaur gastric contents described from the Lower Jurassic of Lyme Regis and Charmouth, England, as well as Holzmaden, Germany, contain remains of belemnites, which were generally slim cephalopods resembling modern squids.

Certain accumulations of belemnite rostra are interpreted as ichthyosaur regurgitalites (fossilized vomit). For instance, such an accumulation from the Jurassic of Peterborough, England, was presented in 2001 by Peter Doyle and Jason Wood. Because it seems improbable that the strong and sharp rostra passed through the entire gastrointestinal tract and were excreted in the form of feces, the find was interpreted as a regurgitate of an ichthyosaur. This interpretation is supported by the etching marks on the surfaces of the rostra, and also the fact that they belonged mostly to juvenile individuals.

It was surprising the stomach content of an ichthyosaur from the Upper Albian (Lower Cretaceous) of the Toolebuc Formation, Queensland, described in 2003 by a team of researchers led by Benjamin P. Kear. Apart from fish bones, in the stomach there were present remains of a turtle, and a bird. Turtle fossils are common in those rocks; it also seems that the turtle was an easy prey. The bird was most likely consumed in the form of carrion. Possibly, the dietary habits of ichthyosaurs were much more flexible than previously thought. The finding is also interesting because it’s one of the latest ichthyosaurs – at the end of the Cenomanian, 10 million years later, the ichthyosaurs went extinct. Some speculated that the dietary specialization of ichthyosaurs were a contributing factor in their extinction. This explanation seems however inconsistent with the discovery from the Toolebuc Formation.

What did the turtles cf. Notochelone, which the ichthyosaurs preyed on, eat? The Cretaceous turtles of the family Protostegidae are an extinct group whose diet was unknown. However, three years later Benjamin P. Kear described stomach contents and coprolites (fossilized feces) of the turtles from the Toolebuc Formation. They contained crushed shells of bivalves belonging to the family Inoceramidae. As the bivalves were benthic organisms, it means living on the seafloor, the conclusions one more time were inconsistent with the expectations. Some supposed that these turtles were pelagic predators and fed on ammonites in the water column.

Taken together, the findings from the Australian Toolebuc Formation give an unusual opportunity to take a look at ancient food chains, which encompassed the turtles feeding on bivalves, and the ichthyosaurs feeding on turtles, fishes, and even the carrion of birds.

The marine depths

In 2013, I described a little younger coprolite from the Upper Cretaceous of the Carpathian Mountains, Poland. Similarly to the coprolites from Australia, the putative coprolite from Poland contains crushed shells of bivalves belonging to the family Inoceramidae. Unfortunately, it’s not easy to determine what animal it was produced by: although a reptile cannot be ruled out as the producer, a teleost fish seems the most simple explanation. In contrast to the specimens from Australia, which come from shallow-marine sediments, the coprolite from the flysch of the Carpathians was found in rocks formed in the marine depths. Its geologic context is indeed interesting. The feces were buried beneath sediments of a so-called turbidity current, i.e. a submarine avalanche transporting sediments to the oceanic depths. The specimen is also interesting because it contains numerous shells, whereas the host rocks are extremely poor in body macrofossils of animals. Feces constitute an exceptional accumulation of remains. The dietary residues can be moreover transported in the gastrointestinal tract of the fecal producer far away, even to a different environment.

The juvenile prey

In 2015, a team of researchers led by David R. Schwimmer described an interesting find from the Upper Cretaceous of South Carolina. The spiral bromalite, i.e. feces or an intestinal cast, contains partially articulated vertebrae of a baby freshwater turtle. Due to the small size of the bromalite, the researchers suggest that the shark itself was juvenile as well. These observations might carry interesting ecologic implications showing that the shark fed closely to a freshwater river environment and the breeding sites of the turtles. The researchers consider even the possibility that juvenile sharks migrated far upstream.

Gastric contents of plesiosaurs reveal remains of ammonites, belemnites, bivalves, and fishes. An unusual find from Wyoming was described in 2009. The stomach of a Late Jurassic plesiosaur contained ichthyosaur remains. Strictly speaking, it was an embryo of an unborn ichthyosaur!

Piotr Bajdek

References

Bajdek, P. 2013. Coprolite of a durophagous carnivore from the Upper Cretaceous Godula Beds, Outer Western Carpathians, Poland. Geological Quarterly 57 (2): 361–364. doi: 10.7306/gq.1094

Kear, B.P. 2006. First gut contents in a Cretaceous sea turtle. Biology Letters 2: 113–115. doi: 10.1098/rsbl.2005.0374

Kear, B.P., Boles, W.E., and Smith, E.T. 2003. Unusual gut contents in a Cretaceous ichthyosaur. Proc. R. Soc. Lond. B (Suppl.) 270: 206–208. doi: 10.1098/rsbl.2003.0050

Lomax, D.R. 2010. An Ichthyosaurus (Reptilia, Ichthyosauria) with gastric contents from Charmouth, England: first report of the genus from the Pliensbachian. Paludicola 8 (1): 22–36.

Nature News, 12 February 2002. Jurassic vomit comes up at meeting. doi: 10.1038/news020211-3

O’Keefe, F.R., Street, H.P., Cavigelli, J.P., Socha, J.J., and O’Keefe, R.D. 2009. A plesiosaur containing an ichthyosaur embryo as stomach contents from the Sundance Formation of the Bighorn basin, Wyoming. Journal of Vertebrate Paleontology 29 (4): 1306–1310.

Schwimmer, D.R., Weems, R.E., and Sanders, A.E. 2015. A Late Cretaceous shark coprolite with baby freshwater turtle vertebrae inclusions. Palaios 30: 707–713. doi: 10.2110/palo.2015.019

Morskie drapieżniki, morskie potwory

coprolite ZPAL Tf.6 Cretaceous Poland, from Bajdek 2013
Koprolit morskiego drapieżnika z fragmentami muszli małżów, górna kreda, Polska (reprodukowane z Bajdek, 2013)

Morskie łańcuchy pokarmowe

Ichtiozaury były wyjątkowo przystosowaną do życia w wodzie grupą gadów ery mezozoicznej. Z uwagi na hydrodynamiczną budowę ciała powszechnie uważa się, że ichtiozaury polowały na zwinną i szybką zwierzynę. Rzeczywiście, opisane treści żołądkowe ichtiozaurów z dolnej jury Lyme Regis i Charmouth w Anglii, oraz Holzmaden w Niemczech, zawierają szczątki belemnitów, czyli generalnie smukłych głowonogów przypominających dzisiejsze kałamarnice.

Pewne nagromadzenia rostrów belemnitów interpretuje się jako regurgitality (skamieniałe wymiociny) ichtiozaurów. Dla przykładu, takie nagromadzenie z jury Peterborough w Anglii zaprezentowali w 2001 roku Peter Doyle i Jason Wood. Ponieważ nie wydaje się prawdopodobne, by mocne i ostre rostra przeszły przez cały przewód pokarmowy i zostały wydalone w formie odchodów, znalezisko zostało zinterpretowane jako wypluwka ichtiozaura. Interpretację tę popierają ślady trawienia na powierzchniach rostrów, jak również fakt, że w większości należały one do osobników młodocianych.

Zaskakująca okazała się zawartość żołądka ichtiozaura z górnego albu (dolna kreda) formacji Toolebuc z Queensland, którą opisał w 2003 roku zespół badaczy kierowany przez Benjamina P. Keara. Oprócz ości ryb, w żołądku znalazły się szczątki żółwia, oraz ptaka. Skamieniałości żółwi są powszechne w tych skałach; wydaje się też, że żółw był łatwą zdobyczą. Ptak skosumowany został zapewne w formie padliny. Możliwe, że zwyczaje żywieniowe ichtiozaurów były znacznie elastyczniejsze, niż dotychczas sądzono. Znalezisko jest też interesujące, ponieważ jest to jeden z ostatnich ichtiozaurów – wraz z końcem cenomanu, 10 milionów lat później, ichtiozaury wymarły. Niektórzy spekulowali, że specjalizacja pokarmowa ichtiozaurów była jednym z czynników, które się przyczyniły do ich wymarcia. To wyjaśnienie wydaje się jednak niezgodne z odkryciem z formacji Toolebuc.

Co jadły żółwie cf. Notochelone, które padały łupem ichtiozaurów? Kredowe żółwie z rodziny Protostegidae są grupą wymarłą, której dieta była nieznana. Jednakże trzy lata później Benjamin P. Kear opisał treści żołądkowe i koprolity (skamieniałe odchody) żółwi z formacji Toolebuc. Zawierały one pokruszone muszle małżów z rodziny Inoceramidae. Ponieważ małże były organizmami bentonicznymi, czyli żyjącymi na dnie morskim, wnioski znów okazały się niezgodne z oczekiwaniami. Przypuszczano, że żółwie te były drapieżnikami pelagicznymi i żywiły się amonitami w toni wodnej.

Zebrane razem, znaleziska z australijskiej formacji Toolebuc dają niezwykłą okazję by przyjrzeć się dawnym łańcuchom pokarmowym, które objęły żółwie żywiące się małżami, oraz ichtiozaury spożywające żółwie, ryby, a nawet ptasią padlinę.

Morskie głębiny

W 2013 roku opisałem nieco młodszy koprolit z górnej kredy polskich Karpat. Podobnie jak koprolity z Australii, przypuszczalny koprolit z Polski zawiera pokruszone muszle małżów z rodziny Inoceramidae. Niestety nie jest łatwo określić, jakie zwierzę było jego wytwórcą: choć nie można wykluczyć gada, najprostszym wyjaśnieniem wydaje się ryba promieniopłetwa. W przeciwieństwie do okazów z Australii, które pochodzą z osadów płytkomorskich, koprolit z karpackiego fliszu był znaleziony w skałach uformowanych w głębi morskiej. Jego kontekst geologiczny rzeczywiście jest interesujący. Odchody zostały przykryte osadem tzw. prądu turbidytowego, czyli podmorskiej lawiny transportującej osad w głębie oceaniczne. Okaz jest interesujący również dlatego, że zawiera liczne muszle podczas gdy skały, z których pochodzi, są ekstremalnie ubogie w makroszczątki zwierząt. Odchody stanowią szczególną akumulację szczątków. Resztki pokarmowe mogą dodatkowo zostać przetransportowane w przewodzie pokarmowym wytwórcy odchodów na pewną odległość, nawet do innego środowiska.

Młodociane ofiary

W roku 2015 zespół badaczy pod kierownictwem Davida R. Schwimmera opisał ciekawe znalezisko z górnej kredy Karoliny Południowej. Spiralny bromalit rekina, czyli odchody, albo odlew jelita, zawiera częściowo artykułowane kręgi młodego słodkowodnego żółwia. Z uwagi na niewielki rozmiar bromalitu badacze sugerują, że sam rekin również był młodociany. Obserwacje te miałyby interesujące implikacje ekologiczne wskazując, że rekin odżywiał się blisko słodkowodnego środowiska rzecznego i stanowisk lęgowych żółwi. Badacze rozważają nawet możliwość, że młode rekiny migrowały daleko w górę rzeki.

Treści żołądkowe plezjozaurów ukazują szczątki amonitów, belemnitów, małży i ryb. Niezwyczajne znalezisko z Wyoming opisano w roku 2009. Żołądek późnojurajskiego plezjozaura zawierał szczątki ichtiozaura. Ściśle mówiąc, był to embrion nienarodzonego ichtiozaura!

Piotr Bajdek

Literatura

Bajdek, P. 2013. Coprolite of a durophagous carnivore from the Upper Cretaceous Godula Beds, Outer Western Carpathians, Poland. Geological Quarterly 57 (2): 361–364. doi: 10.7306/gq.1094

Kear, B.P. 2006. First gut contents in a Cretaceous sea turtle. Biology Letters 2: 113–115. doi: 10.1098/rsbl.2005.0374

Kear, B.P., Boles, W.E., and Smith, E.T. 2003. Unusual gut contents in a Cretaceous ichthyosaur. Proc. R. Soc. Lond. B (Suppl.) 270: 206–208. doi: 10.1098/rsbl.2003.0050

Lomax, D.R. 2010. An Ichthyosaurus (Reptilia, Ichthyosauria) with gastric contents from Charmouth, England: first report of the genus from the Pliensbachian. Paludicola 8 (1): 22–36.

Nature News, 12 February 2002. Jurassic vomit comes up at meeting. doi: 10.1038/news020211-3

O’Keefe, F.R., Street, H.P., Cavigelli, J.P., Socha, J.J., and O’Keefe, R.D. 2009. A plesiosaur containing an ichthyosaur embryo as stomach contents from the Sundance Formation of the Bighorn basin, Wyoming. Journal of Vertebrate Paleontology 29 (4): 1306–1310.

Schwimmer, D.R., Weems, R.E., and Sanders, A.E. 2015. A Late Cretaceous shark coprolite with baby freshwater turtle vertebrae inclusions. Palaios 30: 707–713. doi: 10.2110/palo.2015.019

Giant dicynodont from the Triassic of Poland

800px-Dicynodont_from_PolandDB

Illustration by Dmitry Bogdanov under the CC BY 3.0 License: source

The giants from the Triassic of Poland

The robust animal in the picture calls attention as the youngest, in the sense of the geologic age, and also the largest member of dicynodonts. The dicynodonts constitute one of the branches of the mammal-like reptiles, which the ancestors of mammals also belonged to, and hence the remote ancestors of humans. Shortly before the disappearance of the dicynodonts by the late Late Triassic, there had evolved some gigantic forms as the species discovered at the Lisowice site in Poland.

During the last 10 years, the Lisowice site has yielded lots of interesting findings, the most famous of which are two giants: (1) An unnamed yet, robust, 5–6 meters long dicynodont was the biggest of the known herbivores of its time. (2) The carnivorous dinosaur Smok wawelski, of a comparable length of 5–6 meters, was the largest terrestrial predator of its epoch too. The Lisowice site presents an ecosystem of the Norian or Rhaetian, the Late Triassic, dated back to around 208 million years ago. The epoch of the mammal-like reptiles was about to be finished, leaving nevertheless the legacy of the first mammals, whereas the dinosaurs had recently begun to proliferate.

The giant dicynodont has left for paleontologists its bones, footprints, and scats, which still are being studied. Now, let’s make a preliminary reconstruction of that animal and its habits in the environment of the Triassic of Lisowice.

Ecological niche of the dicynodont

In 2011, during my visit to the site, the paleontologist Grzegorz Niedźwiedzki showed me numerous and enigmatic, oval, dark gray structures, mostly below 10 cm in length. The finding appeared to be exciting as we were talking about possible coprolites, it means fossilized feces of the dicynodont. Herbivore coprolites (or their descriptions) are exceptionally rare on a world scale, but first and foremost these fossils constitute an invaluable source of information about the diet and the physiology of extinct animals whose bone remains we unearth. Three years later came a preliminary publication on this material, whose I’m the first author in collaboration with Krzysztof Owocki and Grzegorz Niedźwiedzki.

dicynodont-coprolite-Lisowice

Although the putative coprolites contain organic matter, in the macroscopic view most of them reveal very few plant remains. The herbivorous diet of their producer was corroborated by analyses of the isotopes of carbon (δ13C) and nitrogen (δ15N). The coprolites enclose several types of pollen and also tissues of gymnosperms. There are also some very rare specimens of another type that are replete with wood fragments.

Sedimentological analyses, it means the study of the deposited sediments, as well as the geochemical analyses, suggest that the Lisowice site represented an environment comparable to the wetlands of the Everglades, Florida. The lack of woody plant elements in the vast majority of the coprolites of the giant dicynodont might be explained simply by the consumption of soft plants.

Now, let’s compare the dicynodont to the hippo. Although the hippopotamuses consume soft aquatic plants, this food resource is insufficient for these sizable animals. At night, the hippos leave the water pools to graze on grasses, but the grasses hadn’t yet evolved in the Triassic. Here, the rare wood-rich coprolites appear interesting. In 2007, Karen Chin described wood-rich coprolites produced by the herbivorous dinosaur Maiasaura from the Cretaceous of Montana. Although it would seem a weird custom in modern animals, Karen Chin suggested that the coprolite producers intentionally ingested rotted, partially decomposed wood and noticed the lack of grasses in the ecosystems of the Cretaceous. The rotting wood might be easily accessible in the wetlands of Lisowice.

Dicynodont coprolites are fairly numerous at the Lisowice site and it’s not ruled out that the dicynodont lived in herds, although scats tend to be abundant around sources of drinking water. In 2013, there were described copious accumulations of dicynodont coprolites from the Triassic of Argentina. The team of researchers led by Lucas Fiorelli suggested that the dungs were made in communal latrines, just as some modern mammals do it, in particular large herbivores. The hippopotamuses form small herds too.

Physiology of the dicynodont

Below, I list the titles of several of the numerous papers of German physiologists that constitute a source of a scientific inspiration for me and allowed a preliminary draft of the physiology of the dicynodont from Lisowice in the publication of 2014. On my blog, in various occasions I will highlight the significance of fossil feces for the understanding of the physiology of extinct animal groups.

To say something about the physiology of the dicynodont, firstly we note that modern reptiles are characterized by a long retention of food in the gastrointestinal tract, i.e. by a slow metabolism. On the other hand, the mammals used to initially triturate the food in the mouth and then it passes rapidly through the gastrointestinal tract. The mammalian groups vary between each other in the digestive strategy too. To eat more not always means to gain more. With the increase of consumption, accelerates the passage of the ingesta through the gastrointestinal tract as well, resulting in a worse digestion. For example, the hippo is capable to consume 45–50 kg of forage a day (I mean a dry matter). Each additional kilogram would paradoxically cause an energetic loss and no longer a gain, so that the hippopotamuses spend only 30% of a day foraging. This phenomenon is minimized in the elephants, which spend 75% of a day foraging.

However, to eat more involves to be less choosy and to ingest foodstuffs of a lower quality. Apart from the mentioned exceptions, the food of the dicynodont from Lisowice used to be non-fibrous and hence it seems that it ate little. It’s important to note that the dicynodont was toothless. In modern herbivorous mammals a better mastication of food allows to increase the total consumption. It can be observed via juxtaposition of different groups of mammals, or mammals with reptiles. We conclude that the dicynodont consumed relatively small amounts of forage and then it was retained for a long time in the gastrointestinal tract. Thus, in this mammal-like reptile we can see a strategy more typical of reptiles than mammals, yet it supports the comparison to the hippopotamus, which is an animal of a low-energy lifestyle.

The coprolites of the dicynodont from Lisowice contain a good deal of quartz grains. So-called gastroliths are hard objects missing a nutritional value that are found in the gastrointestinal tract. It’s very common to highlight the role of gastroliths in the crumbling of food particles in the stomach of some animals. However, such a mechanism seems unsubstantiated in the case of the dicynodont from Lisowice. The mineral grains in the coprolites are rather small and could be swallowed accidentally in large amounts in the wetlands with forage or turbid water. The amounts of sand and small gravel found in the stomachs of hippopotamuses are astonishing, sometimes reaching one third of the weight of their (wet) content.

Finally, we can note that the increase of the body size can serve as a strategy allowing a prolonged food retention in the gastrointestinal tract and a better digestion. The body size of dicynodonts was increasing across the Triassic, and the latest of their members, it is the dicynodont from Lisowice, was a real giant. A super strong digestion of a weak food might explain in general the high fragmentation of the plant remains in the coprolites of the dicynodont (although in part it was caused by destructive processes when the fresh dung was turned into a rock). In mammals, after an initial mastication the ingested plant tissues do not reduce in size significantly during the passage through the gastrointestinal tract. In modern herbivorous reptiles, which are characterized by a much longer digestion, the ingested plant tissues do indeed get crumbled due to the digestive processes. In spite of such a reduction, the residues in the feces of reptiles on average are still of larger dimensions than in feces of herbivorous mammals (of a comparable body mass). Today’s reptiles, as some lizards, are however very small animals and none of them can be compared to the gigantic dicynodont from Lisowice.

As it was noted by the team of Grzegorz Niedźwiedzki in 2011, meanwhile the body size of dicynodonts was increasing during their evolution, the predators were growing too. Tooth marks on the bones of the dicynodont moreover suggest that it was under the pressure of the mentioned carnivorous dinosaur Smok wawelski. It’s very interesting the way the physiological innovations, new feeding strategies, and the expansion into new ecological niches, fitted into the race between herbivores and predators.

Piotr Bajdek

References

Bajdek, P., Owocki, K., and Niedźwiedzki, G. 2014. Putative dicynodont coprolites from the Upper Triassic of Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 411: 1–17. doi: 10.1016/j.palaeo.2014.06.013

Chin, K. 2007. The paleobiological implications of herbivorous dinosaur coprolites from the Upper Cretaceous Two Medicine Formation of Montana: why Eat Wood? Palaios 22: 554–566. doi: 10.2110/palo.2006.p06-087r

Clauss, M., Streich, W.J., Schwarm, A., Ortmann, S., and Hummel, J. 2007. The relationship of food intake and ingesta passage predicts feeding ecology in two different megaherbivore groups. Oikos 116: 209–216. doi: 10.1111/j.2006.0030-1299.15461.x

Dzik, J., Sulej, T., and Niedźwiedzki, G. 2008. A dicynodont-theropod association in the latest Triassic of Poland. Acta Palaeontologica Polonica 53 (4): 733–738. doi: 10.4202/app.2008.0415

Fiorelli, L.E., Ezcurra, M.D., Hechenleitner, E.M., Argañaraz, E., Taborda, J.R.A., Trotteyn, M.J., Belén von Baczko, M., and Desojo, J.B. 2013. The oldest known communal latrines provide evidence of gregarism in Triassic megaherbivores. Scientific Reports 3, 3348. doi: 10.1038/srep03348

Fritz, J., Hummel, J., Kienzle, E., Streich, W.J., and Clauss, M. 2010. To chew or not to chew: fecal particle size in herbivorous reptiles and mammals. J. Exp. Zool. A Ecol. Genet. Physiol. 313A (9): 579–586.

Martin, R.B. 2005. Transboundary Species Project. Background Study: Hippopotamus. Namibia Nature Foundation, Windhoek.

Niedźwiedzki, G., Gorzelak, P., and Sulej, T. 2011. Bite traces on dicynodont bones and the early evolution of large terrestrial predators. Lethaia 44: 87–92. doi: 10.1111/j.1502-3931.2010.00227.x

Niedźwiedzki, G., Sulej, T., and Dzik, J. 2012. A large predatory archosaur from the Late Triassic of Poland. Acta Palaeontologica Polonica 57 (2): 267–276. doi: 10.4202/app.2010.0045

Schwarm, A., Ortmann, S., Wolf, C., Streich, W.J., and Clauss, M. 2009. More efficient mastication allows increasing intake without compromising digestibility or necessitating a larger gut: comparative feeding trials in banteng (Bos javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis). Comp. Biochem. Physiol. A 152 (4): 504–512.

Wings, O., Hatt, J.M., Schwarm, A., and Clauss, M. 2008. Gastroliths in a pygmy hippopotamus (Hexaprotodon liberiensis Morton 1844) (Mammalia, Hippopotamidae). Senckenbergiana biologica 88 (2): 345–348.

Dicinodonte gigante del Triásico de Polonia

800px-Dicynodont_from_PolandDB

Ilustración de Dmitry Bogdanov bajo la licencia CC BY 3.0: fuente

Los gigantes del Triásico de Polonia

El robusto animal que se aprecia en la imagen llama la atención como el menor en términos de edad geológica y, a la vez, el más grande representante de dicinodontes. Los dicinodontes constituian una de las ramas de los reptiles mamiferoides a los cuales pertenecían además los predecesores de los mamíferos y asimismo los remotos antecesores del hombre. Poco antes de que los dicinodontes desaparecieran a los finales del Triásico, evolucionaron ciertas formas gigantescas, como la especie descubierta en el sitio de Lisowice en Polonia.

Durante los últimos 10 años en Lisowice se han engendrado varios hallazgos interesantes, los más famosos de los cuales son dos gigantes: (1) El robusto dicinodonte, de 5–6 metros de longitud y que todavía carece de nombre, es el más grande de los conocidos herbívoros de sus tiempos. (2) De igual manera, el más grande de su época era el dinosaurio carnívoro Smok wawelski, de una comparable longitud de 5–6 metros. En el sitio de Lisowice se demuestra un ecosistema del Noriense o Rhaetiense, de los finales del período Triásico, de hace cerca de 208 millones de años. La época de los reptiles mamiferoides estaba ya por terminar, dejando sin embargo como herencia los primeros mamíferos, y los dinosaurios recién habían empezado a proliferarse.

El dicinodonte les dejó a los paleontólogos tras de sí sus huesos, huellas y excrementos, los cuales siguen siendo estudiados. Reconstruyamos preliminarmente este animal y su comportamiento en el ambiente del Triásico de Lisowice.

Nicho ecológico del dicinodonte

En 2011 durante mi visita en el sito, el paleontólogo Grzegorz Niedźwiedzki me mostró unas numerosas y enigmáticas, ovaladas estructuras del color gris oscuro, en su mayoría por debajo de 10 cm de longitud. El hallazgo pareció excitante puesto que se trataba de unos posibles coprolitos, es decir excrementos fosilizados del dicinodonte. Los coprolitos de herbívoros (o sus descripciones) son excepcionalmente escasos en el mundo, pero sobre todo esos fósiles constituyen una valiosa fuente de información acerca de la dieta y fisiología de los animales extintos cuyos restos óseos encontramos. Tres años después salió una publicación preliminar sobre este material, de la cual soy el primer autor en colaboración con Krzysztof Owocki y Grzegorz Niedźwiedzki.

dicynodont-coprolite-LisowiceSi bien los posibles coprolitos contienen materia orgánica, en la mayoría de ellos a simple vista se aprecian muy pocos restos de plantas. La dieta herbívora de sus producentes fue corroborada por los análisis de isótopos de carbono (δ13C) y nitrógeno (δ15N). En los coprolitos hay varios tipos de polen y también tejidos de las plantas gimnospermas. Se han encontrado también unos muy escasos especímenes de otro tipo repletos de fragmentos de madera.

Los análisis sedimentológicos, es decir el estudio de los sedimentos depositados, así como los análisis geoquímicos sugieren que el sitio de Lisowice representaba un ambiente semejante a los humedales de Everglades en Florida. La falta de fibras de madera en la inmensa mayoría de los coprolitos del dicinodonte gigante se la puede explicar sencillamente por el consumo de plantas blandas.

Ahora bien, comparemos el dicinodonte con el hipopótamo. A pesar de que los hipopótamos consumen las plantas acuáticas, tan solo este alimento no les puede servir de un pábulo suficiente. En la noche los hipopótamos abandonan el agua para pastar en las gramíneas pero ellas aún no existían en el Triásico. Aquí resultan interesantes esos infrecuentes coprolitos que están repletos de madera. En 2007 Karen Chin describió unos coprolitos muy ricos en madera que fueron producidos por el dinosaurio Maiasaura del Cretácico de Montana. Aunque en los animales modernos parezca una costumbre extraña, Karen Chin sugirió que los producentes de esos coprolitos comían de modo intencional la madera podrida y descompuesta por hongos e hizo una acotación acerca de la falta de las gramíneas en los ecosistemas cretácicos. Puede que la madera en putrefacción fuera de fácil acceso en los humedales de Lisowice.

Los coprolitos del dicinodonte son bastante abundantes en el sitio de Lisowice y no se descarta que el dicinodonte viviera en manadas, aunque los excrementos suelen ser cuantiosos alrededor de las fuentes de agua potable. En 2013 se describieron del Triásico de Argentina unas cuantiosas acumulaciones de coprolitos de los dicinodontes. El equipo de investigadores que encabezó Lucas Fiorelli sugirió que las heces fueron hechas en letrinas comunales, así como lo hacen varios mamíferos modernos, sobre todo los herbívoros grandes. También los hipopótamos forman pequeñas manadas.

Fisiología del dicinodonte

Abajo puse títulos de unos cuantos de los numerosos trabajos de fisiólogos alemanes que constituyen para mí una fuente de inspiración científica y facilitaron un preliminar bosquejo la fisiología del dicinodonte de Lisowice en la publicación de 2014. En mi blog voy a resaltar en varias ocasiones la significación de los excrementos fósiles para el entendimiento de la fisiología de animales extintos.

Para decir algo sobre la fisiología del dicinodonte, primero notemos que los reptiles modernos se caracterizan por una prolongada retención del alimento en el tracto digestivo, es decir por un lento metabolismo. En cambio, los mamíferos suelen inicialmente triturar los alimentos en la boca, los cuales atraviesan rápido el tracto digestivo. De igual manera, varios grupos de mamíferos difieren entre sí en la estrategia digestiva. Comer más no siempre implica ganar más. Con el aumento del consumo, se acelera el paso del alimento por el tracto digestivo y en consecuencia se empeora su digestión. Por ejemplo, el hipopótamo puede ingerir 45–50 kg de forraje por día (me refiero a la masa seca). Paradójicamente, cada kilógramo extra causaría una pérdida energética y no una ganancia, así que los hipopótamos solo pasan 30% del día pastando. Este fenómeno es de menor importancia en los elefantes, los cuales pasan 75% del día pastando.

Empero, comer más conlleva ser menos quisquilloso con la comida e ingerir alimentos de peor calidad. Salvo las mentadas excepciones, el alimento del dicinodonte de Lisowice solía ser poco fibroso lo que sugiere que comía poco. Es importante acotar que el dicinodonte no tenía dientes. En los mamíferos modernos, una mejor masticación de alimentos facilita el aumento del consumo total. Se lo puede observar cotejando distintos grupos de mamíferos, o bien los mamíferos con los reptiles. Concluimos que el dicinodonte consumía relativamente pequeñas cantidades del forraje y lo retenía prolongadamente en el tracto digestivo. Así pues, en este reptil mamiferoide se destaca una estrategia más típica de los reptiles y no de los mamíferos, que sin embargo a la vez puede sustentar la comparación con el hipopótamo, el que es un animal poco activo.

Los coprolitos del dicinodonte de Lisowice contienen bastantes granos de cuarzo. Los llamados gastrolitos son unos objetos duros que se encuentran en el tracto digestivo y que carezcan de valor nutritivo. Se suele subrayar el papel que los gastrolitos cumplen en el desmenuzamiento de las partículas alimenticias en el estómago de algunos animales. Sin embargo, parece que faltan fundamentos para suponerlo en el caso del dicinodonte de Lisowice. Los granos minerales de los coprolitos son más bien pequeños y habrían podido ser ingeridos de modo casual en grandes cantidades en los humedales con el forraje o el agua turbia. Son asombrosas las cantidades de la arena y gravilla que se pueden hallar en los estómagos de hipopótamos, a veces alcanzando a constituir la tercera parte del peso de su contenido (húmedo).

Finalmente, notemos que un aumento del tamaño del cuerpo puede servir como una estrategia para prolongar la retención del alimento en el tracto digestivo, lo cual conllevaría su mejor digestión. El tamaño de cuerpo de los dicinodontes iba creciendo a lo largo de su evolución en el Triásico, mientras que su último representante, es decir el dicinodonte de Lisowice, era un verdadero gigante. Una digestión superfuerte de un alimento blando podría explicar por lo general la gran fragmentación de los restos de plantas en los coprolitos del dicinodonte (aunque en parte se debe a los procesos destructivos durante la trasmutación de los excrementos frescos en una roca). En los mamíferos, tras una masticación inicial, los tejidos de las plantas no disminuyen notablemente sus dimensiones pasando por el tracto digestivo. En cambio, en los reptiles herbívoros modernos, que se caracterizan por una digestión mucho más prolongada, los restos de las plantas consumidas resultan disminuidos a causa de la digestión. A pesar de esta reducción, los residuos en excrementos de reptiles aún son en promedio de dimensiones más grandes que en las heces de los mamíferos herbívoros (de una comparable masa corporal). Sin embargo, los reptiles herbívoros de hoy, como algunos lagartos, son unos animales muy pequeños y a ninguno de ellos se lo puede comparar con el gigantesco dicinodonte de Lisowice.

Como ha notado el equipo de Grzegorz Niedźwiedzki en el año 2011, junto con el aumento de tamaño de los dicinodontes durante su evolución, estaban creciendo también los depredadores. Las huellas de dientes en los huesos del dicinodonte de Lisowice además sugieren que estaba bajo la presión del mencionado dinosaurio carnívoro Smok wawelski. Es muy interesante cómo las innovaciones fisiológicas, las nuevas estrategias alimentarias y la ocupación de nuevos nichos ecológicos se enmarcaban en esta carrera entre los herbívoros y depredadores.

Piotr Bajdek

Bibliografía

Bajdek, P., Owocki, K., and Niedźwiedzki, G. 2014. Putative dicynodont coprolites from the Upper Triassic of Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 411: 1–17. doi: 10.1016/j.palaeo.2014.06.013

Chin, K. 2007. The paleobiological implications of herbivorous dinosaur coprolites from the Upper Cretaceous Two Medicine Formation of Montana: why Eat Wood? Palaios 22: 554–566. doi: 10.2110/palo.2006.p06-087r

Clauss, M., Streich, W.J., Schwarm, A., Ortmann, S., and Hummel, J. 2007. The relationship of food intake and ingesta passage predicts feeding ecology in two different megaherbivore groups. Oikos 116: 209–216. doi: 10.1111/j.2006.0030-1299.15461.x

Dzik, J., Sulej, T., and Niedźwiedzki, G. 2008. A dicynodont-theropod association in the latest Triassic of Poland. Acta Palaeontologica Polonica 53 (4): 733–738. doi: 10.4202/app.2008.0415

Fiorelli, L.E., Ezcurra, M.D., Hechenleitner, E.M., Argañaraz, E., Taborda, J.R.A., Trotteyn, M.J., Belén von Baczko, M., and Desojo, J.B. 2013. The oldest known communal latrines provide evidence of gregarism in Triassic megaherbivores. Scientific Reports 3, 3348. doi: 10.1038/srep03348

Fritz, J., Hummel, J., Kienzle, E., Streich, W.J., and Clauss, M. 2010. To chew or not to chew: fecal particle size in herbivorous reptiles and mammals. J. Exp. Zool. A Ecol. Genet. Physiol. 313A (9): 579–586.

Martin, R.B. 2005. Transboundary Species Project. Background Study: Hippopotamus. Namibia Nature Foundation, Windhoek.

Niedźwiedzki, G., Gorzelak, P., and Sulej, T. 2011. Bite traces on dicynodont bones and the early evolution of large terrestrial predators. Lethaia 44: 87–92. doi: 10.1111/j.1502-3931.2010.00227.x

Niedźwiedzki, G., Sulej, T., and Dzik, J. 2012. A large predatory archosaur from the Late Triassic of Poland. Acta Palaeontologica Polonica 57 (2): 267–276. doi: 10.4202/app.2010.0045

Schwarm, A., Ortmann, S., Wolf, C., Streich, W.J., and Clauss, M. 2009. More efficient mastication allows increasing intake without compromising digestibility or necessitating a larger gut: comparative feeding trials in banteng (Bos javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis). Comp. Biochem. Physiol. A 152 (4): 504–512.

Wings, O., Hatt, J.M., Schwarm, A., and Clauss, M. 2008. Gastroliths in a pygmy hippopotamus (Hexaprotodon liberiensis Morton 1844) (Mammalia, Hippopotamidae). Senckenbergiana biologica 88 (2): 345–348.